
Sympa
Mailing Lists Management Software

version 5.3a.10

Serge Aumont, Olivier Salaün, Christophe Wolfhugel,

21 November 2006

2

Table des matières

1 Presentation 15
1.1 License . 16
1.2 Features . 16
1.3 Project directions . 18
1.4 History . 18
1.5 Authors and credits . 19
1.6 Mailing lists and support . 20

2 what does Sympa consist of ? 21
2.1 Organization . 21
2.2 Binaries . 23
2.3 Configuration files . 23
2.4 Spools . 24
2.5 Roles and privileges . 25

2.5.1 (Super) listmasters . 25
2.5.2 (Robot) listmasters . 25
2.5.3 Privileged list owners . 25
2.5.4 (Basic) list owners . 25
2.5.5 Moderators (also called Editors) 26
2.5.6 Subscribers (or list members) 26

3 Installing Sympa 27
3.1 Obtaining Sympa, related links . 27
3.2 Prerequisites . 27

3.2.1 System requirements . 28
3.2.2 Install Berkeley DB (NEWDB) 28
3.2.3 Install PERL and CPAN modules 29
3.2.4 Required CPAN modules . 29
3.2.5 Create a UNIX user . 30

3.3 Compilation and installation . 31
3.3.1 Choosing directory locations 33

3.4 Robot aliases . 33
3.5 Logs . 33

4 Running Sympa 35
4.1 sympa.pl . 35
4.2 INIT script . 36
4.3 Stopping Sympa and signals . 37

3

4 TABLE DES MATIÈRES

5 Upgrading Sympa 39
5.1 Incompatible changes . 39
5.2 CPAN modules update . 40
5.3 Database structure update . 41
5.4 Preserving your customizations . 42
5.5 Running 2 Sympa versions on a single server 42
5.6 Moving to another server . 43

6 Mail aliases 45
6.1 Robot aliases . 45
6.2 List aliases . 46
6.3 Alias manager . 47
6.4 Virtual domains . 48

7 sympa.conf parameters 49
7.1 Site customization . 49

7.1.1 domain . 49
7.1.2 email . 50
7.1.3 listmaster . 50
7.1.4 listmaster email . 50
7.1.5 wwsympa url . 50
7.1.6 soap url . 51
7.1.7 spam protection . 51
7.1.8 web archive spam protection 51
7.1.9 color 0, color 1 .. color 15 51
7.1.10 dark color, light color, text color, bg color,

error color, selected color, shaded color 52
7.1.11 logo html definition . 52
7.1.12 css path . 52
7.1.13 css url . 52
7.1.14 static content path . 53
7.1.15 static content url . 53
7.1.16 pictures feature . 53
7.1.17 pictures max size . 53
7.1.18 cookie . 53
7.1.19 create list . 54
7.1.20 automatic list feature 54
7.1.21 automatic list creation 54
7.1.22 automatic list removal 55
7.1.23 global remind . 55

7.2 Directories . 55
7.2.1 home . 55
7.2.2 etc . 55

7.3 System related . 56
7.3.1 syslog . 56
7.3.2 log level . 56
7.3.3 log socket type . 56
7.3.4 pidfile . 56
7.3.5 pidfile creation . 57
7.3.6 umask . 57

TABLE DES MATIÈRES 5

7.4 Sending related . 57
7.4.1 distribution mode . 57
7.4.2 maxsmtp . 57
7.4.3 log smtp . 58
7.4.4 use blacklist . 58
7.4.5 max size . 58
7.4.6 misaddressed commands 58
7.4.7 misaddressed commands regexp 59
7.4.8 nrcpt . 59
7.4.9 avg . 59
7.4.10 sendmail . 59
7.4.11 sendmail args . 59
7.4.12 sendmail aliases . 60
7.4.13 rfc2369 header fields 60
7.4.14 remove headers . 60
7.4.15 anonymous headers fields 60
7.4.16 list check smtp . 60
7.4.17 list check suffixes . 61
7.4.18 urlize min size . 61

7.5 Quotas . 61
7.5.1 default shared quota . 61
7.5.2 default archive quota 61

7.6 Spool related . 62
7.6.1 spool . 62
7.6.2 queue . 62
7.6.3 queuedistribute . 62
7.6.4 queuemod . 62
7.6.5 queuedigest . 62
7.6.6 queueauth . 62
7.6.7 queueoutgoing . 63
7.6.8 queuetopic . 63
7.6.9 queuebounce . 63
7.6.10 queuetask . 63
7.6.11 queueautomatic . 63
7.6.12 tmpdir . 64
7.6.13 sleep . 64
7.6.14 clean delay queue . 64
7.6.15 clean delay queuemod . 64
7.6.16 clean delay queueauth 65
7.6.17 clean delay queuesubscribe 65
7.6.18 clean delay queuetopic 65
7.6.19 clean delay queueautomatic 65

7.7 Internationalization related . 65
7.7.1 localedir . 65
7.7.2 supported lang . 66
7.7.3 lang . 66
7.7.4 web recode to . 66
7.7.5 filesystem encoding . 66

7.8 Bounce related . 67
7.8.1 verp rate . 67

6 TABLE DES MATIÈRES

7.8.2 welcome return path . 67
7.8.3 remind return path . 67
7.8.4 return path suffix . 67
7.8.5 expire bounce task . 68
7.8.6 purge orphan bounces task 68
7.8.7 eval bouncers task . 68
7.8.8 process bouncers task 68
7.8.9 minimum bouncing count 68
7.8.10 minimum bouncing period 69
7.8.11 bounce delay . 69
7.8.12 default bounce level1 rate 69
7.8.13 default bounce level2 rate 69
7.8.14 bounce email prefix . 69
7.8.15 bounce warn rate . 70
7.8.16 bounce halt rate . 70
7.8.17 default remind task . 70

7.9 Tuning . 71
7.9.1 cache list config . 71
7.9.2 sympa priority . 71
7.9.3 request priority . 71
7.9.4 owner priority . 71
7.9.5 default list priority 72

7.10 Database related . 72
7.10.1 update db field types 72
7.10.2 db type . 72
7.10.3 db name . 72
7.10.4 db host . 73
7.10.5 db port . 73
7.10.6 db user . 73
7.10.7 db passwd . 73
7.10.8 db timeout . 73
7.10.9 db options . 73
7.10.10 db env . 74
7.10.11 db additional subscriber fields 74
7.10.12 db additional user fields 74
7.10.13 purge user table task 74

7.11 Loop prevention . 75
7.11.1 loop command max . 75
7.11.2 loop command sampling delay 75
7.11.3 loop command decrease factor 75
7.11.4 loop prevention regex 75

7.12 S/MIME configuration . 76
7.12.1 openssl . 76
7.12.2 capath . 76
7.12.3 cafile . 76
7.12.4 key passwd . 76
7.12.5 chk cert expiration task 76
7.12.6 crl update task . 77

7.13 Antivirus plug-in . 77
7.13.1 antivirus path . 77

TABLE DES MATIÈRES 7

7.13.2 antivirus args . 77
7.13.3 antivirus notify . 78

8 Sympa and its database 79
8.1 Prerequisites . 79
8.2 Installing PERL modules . 80
8.3 Creating a sympa DataBase . 80

8.3.1 Database structure . 80
8.3.2 Database creation . 80

8.4 Setting database privileges . 90
8.5 Importing subscribers data . 90

8.5.1 Importing data from a text file 90
8.5.2 Importing data from subscribers files 91

8.6 Management of the include cache 91
8.7 Extending database table format . 91
8.8 Sympa configuration . 92

9 WWSympa, Sympa’s web interface 93
9.1 Organization . 93
9.2 Web server setup . 94

9.2.1 wwsympa.fcgi access permissions 94
9.2.2 Installing wwsympa.fcgi in your Apache server 95
9.2.3 Using FastCGI . 95

9.3 wwsympa.conf parameters . 96
9.3.1 arc path . 96
9.3.2 archive default index thrd — mail 96
9.3.3 archived pidfile . 96
9.3.4 bounce path . 96
9.3.5 bounced pidfile . 97
9.3.6 cookie expire . 97
9.3.7 cookie domain . 97
9.3.8 default home . 97
9.3.9 icons url . 97
9.3.10 log facility . 98
9.3.11 mhonarc . 98
9.3.12 htmlarea url . 98
9.3.13 password case sensitive — insensitive 98
9.3.14 title . 98
9.3.15 use fast cgi 0 — 1 . 99

9.4 MhOnArc . 99
9.5 Archiving daemon . 99
9.6 Database configuration . 100
9.7 Logging in as listmaster . 100

10 Sympa Internationalization 103
10.1 Catalogs and templates . 103
10.2 Translating Sympa GUI in your language 104
10.3 Defining language-specific templates 104
10.4 Translating topics titles . 104
10.5 Handling of encodings . 104

8 TABLE DES MATIÈRES

11 Sympa RSS channel 107
11.1 latest lists . 107
11.2 active lists . 108
11.3 latest arc . 108
11.4 latest d read . 109

12 Sympa SOAP server 111
12.1 Introduction . 111
12.2 Web server setup . 112
12.3 Sympa setup . 112
12.4 trust remote application . 112
12.5 The WSDL service description . 113
12.6 Client-side programming . 125

12.6.1 Writing a Java client with Axis 125

13 Authentication 129
13.1 S/MIME and HTTPS authentication 130
13.2 Authentication with email address, uid or alternate email address . . . 130
13.3 Generic SSO authentication . 131
13.4 CAS-based authentication . 132
13.5 auth.conf . 132

13.5.1 user table paragraph . 134
13.5.2 ldap paragraph . 135
13.5.3 generic sso paragraph . 137
13.5.4 cas paragraph . 138

13.6 Sharing WWSympa authentication with other applications 140
13.7 Provide a Sympa login form in another application 141

14 Authorization scenarios 143
14.1 rules specifications . 144
14.2 Named Filters . 147

14.2.1 LDAP Named Filters Definition 147
14.2.2 SQL Named Filters Definition 148
14.2.3 Search Condition . 149

14.3 scenario inclusion . 150
14.4 blacklist implicit rule . 150
14.5 Custom perl package conditions . 150
14.6 Hidding scenario files . 151

15 virtual host 153
15.1 How to create a virtual host . 153
15.2 robot.conf . 154

15.2.1 Robot customization . 155
15.3 Managing multiple virtual hosts . 156

16 Interaction between Sympa and other applications 157
16.1 Soap . 157
16.2 RSS channel . 157
16.3 Sharing WWSympa authentication with other applications 157
16.4 Sharing data with other applications 157

TABLE DES MATIÈRES 9

16.5 Subscriber count . 158

17 Customizing Sympa/WWSympa 159
17.1 Template file format . 159
17.2 Site template files . 160

17.2.1 helpfile.tt2 . 160
17.2.2 lists.tt2 . 160
17.2.3 global remind.tt2 . 161
17.2.4 your infected msg.tt2 . 161

17.3 Web template files . 162
17.4 Internationalization . 162

17.4.1 Sympa internationalization 162
17.4.2 List internationalization . 162
17.4.3 User internationalization . 163

17.5 Topics . 163
17.6 Authorization scenarios . 163
17.7 Loop detection . 164
17.8 Tasks . 164

17.8.1 List task creation . 165
17.8.2 Global task creation . 165
17.8.3 Model file format . 165
17.8.4 Model file examples . 167

18 Mailing list definition 169
18.1 Mail aliases . 169
18.2 List configuration file . 169
18.3 Examples of configuration files . 170
18.4 Subscribers file . 171
18.5 Info file . 172
18.6 Homepage file . 172
18.7 Data inclusion file . 172
18.8 List template files . 173

18.8.1 welcome.tt2 . 174
18.8.2 bye.tt2 . 174
18.8.3 removed.tt2 . 175
18.8.4 reject.tt2 . 175
18.8.5 invite.tt2 . 175
18.8.6 remind.tt2 . 175
18.8.7 summary.tt2 . 175
18.8.8 list aliases.tt2 . 175

18.9 Stats file . 176
18.10List model files . 176

18.10.1 remind.annual.task . 176
18.10.2 expire.annual.task . 176

18.11Message header and footer . 176
18.11.1 Archive directory . 177

19 List creation, edition and removal 179
19.1 List creation . 179

19.1.1 Data for list creation . 180

10 TABLE DES MATIÈRES

19.1.2 XML file format . 180
19.2 List families . 182
19.3 List creation on command line with sympa.pl 183
19.4 Creating and editing mailing using the web 183

19.4.1 List creation on the Web interface 183
19.4.2 Who can create lists on the Web interface 184
19.4.3 typical list profile and Web interface 184
19.4.4 List edition . 184

19.5 Removing a list . 186

20 Lists Families 187
20.1 Family concept . 187
20.2 Using family . 188

20.2.1 Definition . 188
20.2.2 Instantiation . 191
20.2.3 Modification . 193
20.2.4 Closure . 193
20.2.5 Adding one list . 193
20.2.6 Removing one list . 194
20.2.7 Modifying one list . 194
20.2.8 List parameters edition in a family context 194

20.3 Automatic list creation . 194
20.3.1 Configuring your MTA . 195
20.3.2 Defining the list family . 196
20.3.3 Configuring Sympa . 197

21 List configuration parameters 199
21.1 List description . 199

21.1.1 editor . 199
21.1.2 editor include . 200
21.1.3 host . 200
21.1.4 lang . 200
21.1.5 owner . 201
21.1.6 owner include . 202
21.1.7 subject . 202
21.1.8 topics . 203
21.1.9 visibility . 203

21.2 Data source related . 203
21.2.1 user data source . 203
21.2.2 ttl . 204
21.2.3 include list . 204
21.2.4 include remote sympa list 205
21.2.5 include sql query . 205
21.2.6 include ldap query . 207
21.2.7 include ldap 2level query 208
21.2.8 include file . 210
21.2.9 include remote file . 210

21.3 Command related . 211
21.3.1 subscribe . 211
21.3.2 unsubscribe . 212

TABLE DES MATIÈRES 11

21.3.3 add . 212
21.3.4 del . 213
21.3.5 remind . 213
21.3.6 remind task . 214
21.3.7 expire task . 214
21.3.8 send . 214
21.3.9 review . 215
21.3.10 shared doc . 216

21.4 List tuning . 217
21.4.1 reply to header . 217
21.4.2 max size . 218
21.4.3 anonymous sender . 218
21.4.4 custom header . 218
21.4.5 rfc2369 header fields . 219
21.4.6 loop prevention regex . 219
21.4.7 custom subject . 219
21.4.8 footer type . 219
21.4.9 digest . 220
21.4.10 digest max size . 220
21.4.11 available user options . 221
21.4.12 default user options . 221
21.4.13 msg topic . 221
21.4.14 msg topic keywords apply on 222
21.4.15 msg topic tagging . 222
21.4.16 pictures feature . 222
21.4.17 cookie . 222
21.4.18 priority . 223

21.5 Bounce related . 223
21.5.1 bounce . 223
21.5.2 bouncers level1 . 224
21.5.3 bouncers level2 . 224
21.5.4 welcome return path . 225
21.5.5 remind return path . 225
21.5.6 verp rate . 225

21.6 Archive related . 226
21.6.1 archive . 226
21.6.2 web archive . 226
21.6.3 archive crypted msg . 227

21.7 Spam protection . 228
21.7.1 spam protection . 228
21.7.2 web archive spam protection 228

21.8 Intern parameters . 228
21.8.1 family name . 228
21.8.2 latest instantiation . 229

22 Reception mode 231
22.1 Message topics . 231

22.1.1 Message topic definition in a list 231
22.1.2 Subscribing to message topic for list subscribers 231
22.1.3 Message tagging . 232

12 TABLE DES MATIÈRES

23 Shared documents 233
23.1 The three kind of operations on a document 234
23.2 The description file . 234

23.2.1 Structure of description files 235
23.3 The predefined authorization scenarios 235

23.3.1 The public scenario . 235
23.3.2 The private scenario . 235
23.3.3 The scenario owner . 236
23.3.4 The scenario editor . 236

23.4 Access control . 236
23.4.1 Listmaster and privileged owners 236
23.4.2 Special case of the shared directory 236
23.4.3 General case . 237

23.5 Shared document actions . 238
23.6 Template files . 239

23.6.1 d read.tt2 . 239
23.6.2 d editfile.tt2 . 239
23.6.3 d control.tt2 . 239
23.6.4 d upload.tt2 . 239
23.6.5 d properties.tt2 . 240

24 Bounce management 241
24.1 VERP . 242
24.2 ARF . 243

25 Antivirus 245

26 Using Sympa with LDAP 247

27 Sympa with S/MIME and HTTPS 249
27.1 Signed message distribution . 249
27.2 Use of S/MIME signature by Sympa itself 250
27.3 Use of S/MIME encryption . 250
27.4 S/Sympa configuration . 250

27.4.1 Installation . 250
27.4.2 managing user certificates 251
27.4.3 configuration in sympa.conf 251
27.4.4 configuration to recognize S/MIME signatures 251
27.4.5 distributing encrypted messages 252

27.5 Managing certificates with tasks . 253
27.5.1 chk cert expiration.daily.task model 254
27.5.2 crl update.daily.task model 254

28 Using Sympa commands 255
28.1 User commands . 255
28.2 Owner commands . 258
28.3 Moderator commands . 258

29 Internals 261
29.1 mail.pm . 261

29.1.1 public functions . 261

TABLE DES MATIÈRES 13

29.1.2 private functions . 263
29.2 List.pm . 265

29.2.1 Functions for message distribution 265
29.2.2 Functions for template sending 267
29.2.3 Functions for service messages 268
29.2.4 Functions for message notification 270
29.2.5 Functions for topic messages 272
29.2.6 Scenario evaluation . 275
29.2.7 Structure and access to list configuration parameters 276

29.3 sympa.pl . 277
29.4 Commands.pm . 280

29.4.1 Commands processing . 280
29.4.2 tools for command processing 287

29.5 wwsympa.fcgi . 287
29.6 report.pm . 290

29.6.1 Message diffusion . 291
29.6.2 Mail commands . 292
29.6.3 Web commands . 294

29.7 tools.pl . 297
29.8 Message.pm . 299

14 TABLE DES MATIÈRES

Chapitre 1

Presentation

Sympa is an electronic mailing list manager. It is used to automate list management
functions such as subscription, moderation, archive and shared document manage-
ment. It also includes management functions which would normally require a substan-
tial amount of work (time-consuming and costly for the list owner). These functions
include automatic management of subscription renewals, list maintenance, and many
others.

Sympa manages many different kinds of lists. It includes a web interface for all list
functions including management. It allows a precise definition of each list feature, such
as sender authorization, the moderating process, etc. Sympa defines, for each feature of
each list, exactly who is authorized to perform the relevant operations, along with the
authentication method to be used. Currently, authentication can be based on either an
SMTP From header, a password, or an S/MIME signature.
Sympa is also able to extract electronic addresses from an LDAP directory or SQL
server, and include them dynamically in a list.

Sympa manages the dispatching of messages, and makes it possible to reduce the load
on the computer system where it is installed. In configurations with sufficient memory,
Sympa is especially well adapted to handling large lists : for a list of 20,000 subscribers,
it requires less than 6 minutes to send a message to 95 percent of the subscribers,
assuming that the network is available (tested on a 300 MHz, 256 MB i386 server with
Linux).

This guide covers the installation, configuration and management of the current release
(5.3a.10) of sympa.

15

http://www.sympa.org

16 CHAPITRE 1. PRESENTATION

1.1 License

Sympa is free software ; you may distribute it under the terms of the GNU General
Public License Version 21

You may make and give away verbatim copies of the source form of this package
without restriction, provided that you duplicate all of the original copyright notices and
associated disclaimers.

1.2 Features

Sympa provides all the basic features that any mailing list management robot should
include. While most Sympa features have their equivalents in other mailing list appli-
cations, Sympa is unique in including features in a single software package, including :

– High speed distribution processing and load control. Sympa can be tuned to al-
low the system administrator to control the amount of computer resources used. Its
optimized algorithm allows :
– the use of your preferred SMTP engine, e.g. sendmail, qmail or postfix
– tuning of the maximum number of SMTP child processes
– grouping of messages according to recipients’ domains, and tuning of the grou-

ping factor
– detailed logging

– Multilingual user interface. The full user/admin interface (mail and web) is interna-
tionalized. Translations are gathered in a standard PO file.

– Template based user interface. Every web page and service message can be custo-
mized via TT2 template format.

– MIME support. Sympa naturally respects MIME in the distribution process, and
in addition allows list owners to configure their lists with welcome, goodbye and
other predefined messages using complex MIME structures. For example, a welcome
message can be in multipart/alternative format, using text/html, audio/x-wav :-),
or whatever (Note that Sympa commands in multipart messages are successfully
processed, provided that one part is text/plain).

– The sending process is controlled on a per-list basis. The list definition al-
lows a number of different actions for each incoming message. A private list
is a list where only subscribers can send messages. A list configured using
privateoreditorkey mode accepts incoming messages from subscribers, but will
forward any other (i.e. non-subscriber) message to the editor with a one-time secret
numeric key that will be used by the editor to reject or distribute it. For details about
the different sending modes, refer to the send parameter (21.3.8, page 214). The
sending process configuration (as well as most other list operations) is defined using
an authorization scenario. Any listmaster can define new authorization scenarios
in order to complement the 20 predefined configurations included in the distribution.

1http ://www.gnu.org/copyleft/gpl.html

http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/gpl.html

1.2. FEATURES 17

Example : forward multipart messages to the list editor, while distributing others
without requiring any further authorization.

– Privileged operations can be performed by list editors or list owners (or any other
user category), as defined in the list config file or by the robot administrator, the
listmaster, defined in the /usr/local/sympa-os/etc/sympa.conf global confi-
guration file (listmaster can also be defined for a particular virtual host). Privileged
operations include the usual ADD, DELETE or REVIEW commands, which can be au-
thenticated via a one-time password or an S/MIME signature.

– Web interface : WWSympa is a global Web interface to all Sympa functions (inclu-
ding administration). It provides :
– classification of lists, along with a search index
– access control to all functions, including the list of lists (which makes WWSympa

particularly well suited to be the main groupware tool within an intranet)
– management of shared documents (download, upload, specific access control for

each document)
– an HTML document presenting each user with the list of her current subscriptions,

including access to archives, and subscription options
– management tools for list managers (bounce processing, changing of list parame-

ters, moderating incoming messages)
– tools for the robot administrator (list creation, global robot configuration)
(See 9.1, page 93)

– RDBMS : the internal subscriber and administrative data structure can be stored in a
database or, for compatibility with versions 1.x, in text files for subscriber data. The
introduction of databases came out of the WWSympa project. The database ensures
a secure access to shared data. The PERL database API DBI/DBD enables interope-
rability with various RDBMS (MySQL, SQLite, PostgreSQL, Oracle, Sybase). (See
ref sec-rdbms, page 79)

– Virtual hosting : a single Sympa installation can provide multiple virtual robots with
both email and web interface customization (See 15, page 153).

– LDAP-based mailing lists : e-mail addresses can be retrieved dynamically from a
database accepting SQL queries, or from an LDAP directory. In the interest of reaso-
nable response times, Sympa retains the data source in an internal cache controlled
by a TTL (Time To Live) parameter. (See 21.2.6, page 207)

– LDAP authentication : via uid and emails stored in LDAP Directories. Alternative
email addresses, extracted from LDAP directory, may be used to ”unify” subscrip-
tions. (See ref ldap-auth, page 130)

– Antivirus scanner : Sympa extracts attachements from incoming messages and run
a virus scanner on them. Curently working with McAfee/uvscan, Fsecure/fsav, So-
phos, AVP, Trend Micro/VirusWall and Clam Antivirus. (See ref antivirus, page 245)

– Inclusion of the subscribers of one list among the subscribers of another. This is real
inclusion, not the dirty, multi-level cascading one might otherwise obtain by simply
”subscribing list B to list A”.

– channel RSS.

18 CHAPITRE 1. PRESENTATION

1.3 Project directions

Sympa is a very active project : check the release note release note2. So it is no longer
possible to maintain multiple document about Sympa project direction. Please refer to
in-the-futur document3 for information about project direction.

1.4 History

Sympa development started from scratch in 1995. The goal was to ensure continuity
with the TULP list manager, produced partly by the initial author of Sympa : Christophe
Wolfhugel.

New features were required, which the TULP code was just not up to handling. The ini-
tial version of Sympa brought authentication, the flexible management of commands,
high performances in internal data access, and object oriented code for easy code main-
tenance.

It took nearly two years to produce the first market releases.

Other date :

– Mar 1999 Internal use of a database (Mysql), definition of list subscriber with exter-
nal datasource (RDBMS or LDAP).

– Oct 1999 Stable version of WWsympa, introduction of authorization scenarios.
– Feb 2000 Web bounces management
– Apr 2000 Archives search engine and message removal
– May 2000 List creation feature from the web
– Jan 2001 Support for S/MIME (signing and encryption), list setup through the web

interface, Shared document repository for each list. Full rewrite of HTML look and
feel

– Jun 2001 Auto-install of aliases at list creation time, antivirus scanner plugging
– Jan 2002 Virtual hosting, LDAP authentication
– Aug 2003 Automatic bounces management
– Sep 2003 CAS-base and Shibboleth-based authentication
– Dec 2003 Sympa SOAP server
– Aug 2004 Changed for TT2 template format and PO catalogue format
– 2005 Changed HTML to XHTML + CSS, RSS, List families, ...

2http ://www.sympa.org/release.html
3http ://www.sympa.org/sympa/in-the-future.html

http://www.sympa.org/release.html
http://www.sympa.org/sympa/in-the-future.html

1.5. AUTHORS AND CREDITS 19

1.5 Authors and credits

Christophe Wolfhugel is the author of the first beta version of Sympa. He developed it
while working for the Institut Pasteur4.

Later developments have mainly been driven by the Comité Réseaux des Universités5

(Olivier Salaün and Serge Aumont), who look after a large mailing list service.

Our thanks to all contributors, including :

– Virginie Paitrault,Université de Rennes 2, who wrote the excellent online user docu-
mentation.

– John-Paul Robinson, University of Alabama at Birmingham, who added to email
verification procedure to the Shibboleth support.

– Gwenaelle Bouteille who joined the development team for a few months and produ-
ced a great job for various feature introduced in V5 (familly, RSS, shared document
moderation, ...).

– Pierre David, who in addition to his help and suggestions in developing the code,
participated more than actively in producing this manual.

– David Lewis who corrected this documentation
– Philippe Rivière for his persevering in tuning Sympa for Postfix.
– Raphaël Hertzog (debian), Jerome Marant (debian) and Stéphane Poirey (redhat) for

Linux packages.
– Loic Dachary for guiding us through the GNU Coding Standards
– Vincent Mathieu, Lynda Amadouche, John Dalbec for their integration of LDAP

features in Sympa.
– Olivier Lacroix, for all his perseverance in bug fixing.
– Hubert Ulliac for search in archive base on marcsearch.pm
– Florent Guilleux who wrote the Task Manager
– Nadia Euzen for developping the antivirus scanner pluggin.
– Fabien Marquois, who introduced many new features such as the digest.
– Valics Lehel, for his Romanian translations
– Vizi Szilard for his Hungarian translations
– Petr Prazak for his Czech translations
– Rodrigo Filgueira Prates for his Portuguese translations
– Lukasz Zalubski for his Polish translations
– Alex Nappa and Josep Roman for their Spanish translations
– Carsten Clasohm and Jens-Uwe Gaspar for their German translations
– Marco Ferrante for his Italian translations
– Tung Siu Fai, Wang Jian and Autrijus Tang for their Chinese translations
– and also : Manuel Valente, Dominique Rousseau, Laurent Ghys, Francois Petillon,

Guy Brand, Jean Brange, Fabrice Gaillard, Hervé Maza, Harald Wilhelmi,
– Anonymous critics who never missed a chance to remind us that smartlist already

did all that better.
– All contributors and beta-testers cited in the RELEASE NOTES file, who, by serving

as guinea pigs and being the first to use it, made it possible to quickly and efficiently

4http ://www.pasteur.fr
5http ://www.cru.fr

http://www.pasteur.fr
http://www.cru.fr

20 CHAPITRE 1. PRESENTATION

debug the Sympa software.
– Ollivier Robert, Usenet Canal Historique and the good manners guru in the PERL

program.
– Bernard Barbier, without whom Sympa would not have a name.

We ask all those we have forgotten to thank to accept our apologies and to let us know,
so that we can correct this error in future releases of this documentation.

1.6 Mailing lists and support

If you wish to contact the authors of Sympa, please use the address
sympa-authors@cru.fr.

There are also a few mailing-lists about Sympa 6 :

– sympa-users@cru.fr general info list
– sympa-fr@cru.fr, for French-speaking users
– sympa-announce@cru.fr, Sympa announcements
– sympa-dev@cru.fr, Sympa developers
– sympa-translation@cru.fr, Sympa translators

To join, send the following message to sympa@cru.fr :

subscribe Listname Firstname Name

(replace Listname, Firstname and Name by the list name, your first name and your
family name).

You may also consult the Sympa home page, you will find the latest version, FAQ and
so on.

6http ://listes.cru.fr/sympa/lists/informatique/sympa

http://listes.cru.fr/sympa/lists/informatique/sympa
http://www.sympa.org
http://www.sympa.org/distribution/

Chapitre 2

what does Sympa consist of ?

2.1 Organization

Here is a snapshot of what Sympa looks like once it has settled down on your system.
This also illustrates the Sympa philosophy, I guess. Almost all configuration files can
be defined for a particular list, for a virtual host or for the whole site.

– /usr/local/sympa-os
The root directory of Sympa. You will find almost everything related to Sympa under
this directory, except logs and main configuration files.

– /usr/local/sympa-os/bin
This directory contains the binaries, including the CGI. It also contains the de-
fault authorization scenarios, templates and configuration files as in the distribu-
tion. /usr/local/sympa-os/bin may be completely overwritten by the make
install so you must not customize templates and authorization scenarios under
/usr/local/sympa-os/bin.

– /usr/local/sympa-os/bin/etc
Here Sympa stores the default versions of what it will otherwise find in
/usr/local/sympa-os/etc (task models, authorization scenarios, templates and
configuration files, recognized S/Mime certificates, families).

– /usr/local/sympa-os/etc
This is your site’s configuration directory. Consult
/usr/local/sympa-os/bin/etc when drawing up your own.

– /usr/local/sympa-os/etc/create list templates/
List templates (suggested at list creation time).

– /usr/local/sympa-os/etc/scenari/
This directory will contain your authorization scenarios. If you don’t
know what the hell an authorization scenario is, refer to 14,page 143.
Those authorization scenarios are default scenarios but you may look at
/usr/local/sympa-os/etc/my.domain.org/scenari/ for default scenarios of

21

22 CHAPITRE 2. WHAT DOES SYMPA CONSIST OF ?

my.domain.orgvirtual host and /usr/local/sympa-os/expl/mylist/scenari
for scenarios specific to a particular list

– /usr/local/sympa-os/etc/data sources/
This directory will contain your .incl files (see 18.7, page 172). For the moment it
only deals with files requiered by paragraphs owner include and editor include
in the config file.

– /usr/local/sympa-os/etc/list task models/
This directory will store your own list task models (see 17.8, page 164).

– /usr/local/sympa-os/etc/global task models/
Contains global task models of yours (see 17.8, page 164).

– /usr/local/sympa-os/etc/web tt2/ (used to be
/usr/local/sympa-os/etc/wws templates/)
The web interface (WWSympa) is composed of template HTML files
parsed by the CGI program. Templates can also be defined for a par-
ticular list in /usr/local/sympa-os/expl/mylist/web tt2/ or in
/usr/local/sympa-os/etc/my.domain.org/web tt2/

– /usr/local/sympa-os/etc/mail tt2/ (used to be
/usr/local/sympa-os/etc/templates/)
Some of the mail robot’s replies are defined by templates (welcome.tt2 for SUB-
SCRIBE). You can overload these template files in the individual list directories or
for each virtual host, but these are the defaults.

– /usr/local/sympa-os/etc/families/
Contains family directories of yours (see 19, page 179). Families directories can also
be created in /usr/local/sympa-os/etc/my.domain.org/families/

– /usr/local/sympa-os/etc/my.domain.org
The directory to define the virtual host my.domain.orgdedicated to manag-
ment of all lists of this domain (list description of my.domain.orgare stored
in /usr/local/sympa-os/expl/my.domain.org). Those directories for virtual
hosts have the same structure as /usr/local/sympa-os/etc which is the configu-
ration dir of the default robot.

– /usr/local/sympa-os/expl
Sympa’s working directory.

– /usr/local/sympa-os/expl/mylist
The list directory (refer to 18, page 169). Lists stored in this directory belong
to the default robot as defined in sympa.conf file, but a list can be stored in
/usr/local/sympa-os/expl/my.domain.org/mylist directory and it is mana-
ged by my.domain.orgvirtual host.

– /usr/local/sympa-os/expl/X509-user-certs
The directory where Sympa stores all user’s certificates

– /usr/local/sympa-os/locale
Internationalization directory. It contains message catalogues in the GNU .po format.

– /usr/local/sympa-os/spool
Sympa uses 9 different spools (see 2.4, page 24).

– /usr/local/sympa-os/src/
Sympa sources.

2.2. BINARIES 23

2.2 Binaries

– sympa.pl
The main daemon ; it processes commands and delivers messages. Continuously
scans the msg/ spool.

– sympa wizard.pl
A wizard to edit sympa.conf and wwsympa.conf. Maybe it is a good idea to run it
at the beginning, but these file can also be edited with your favorite text editor.

– wwsympa.fcgi
The CGI program offering a complete web interface to mailing lists. It can work
in both classical CGI and FastCGI modes, although we recommend FastCGI mode,
being up to 10 times faster.

– bounced.pl
This daemon processes bounces (non-delivered messages), looking for bad ad-
dresses. List owners will later access bounce information via WWSympa. Conti-
nuously scans the bounce/ spool.

– archived.pl
This daemon feeds the web archives, converting messages to HTML format and lin-
king them. It uses the amazing MhOnArc. Continuously scans the outgoing/ spool.

– task manager.pl
The daemon which manages the tasks : creation, checking, execution. It regularly
scans the task/ spool.

– sympa soap server.fcgi
The server will process SOAP (web services) request. This server requires FastCGI ;
it should be referenced from within your HTTPS config.

– queue
This small program gets the incoming messages from the aliases and stores them in
msg/ spool.

– bouncequeue
Same as queue for bounces. Stores bounces in bounce/ spool.

2.3 Configuration files

– /usr/local/sympa-os/etc/sympa.conf
The main configuration file. See 7, page 49.

– /usr/local/sympa-os/etc/wwsympa.conf
WWSympa configuration file. See 1.2, page 17.

– edit list.conf
Defines which parameters/files are editable by owners. See 19.4.4, page 184.

– topics.conf
Contains the declarations of your site’s topics (classification in WWSympa), along
with their titles. A sample is provided in the sample/ directory of the sympa distri-
bution. See 17.5, page 163.

– auth.conf
Defines authentication backend organisation (LDAP-based authentication, CAS-
based authentication and sympa internal)

24 CHAPITRE 2. WHAT DOES SYMPA CONSIST OF ?

– robot.conf
It is a subset of sympa.conf defining a Virtual host (one per Virtual host).

– nrcpt by domain
This file is used to limit the number of recipients per SMTP session. Some ISPs

trying to block spams rejects sessions with too many recipients. In such case you
can set the 7.4.8 robot.conf parameter to a lower value but this will affect all smtp
session with any remote MTA. This file is used to limit the number of receipient
for some particular domains. the file must contain a list of domain followed by the
maximum number of recipient per SMTP session. Example :

– data structure.version
This file is automatically created and maintained by Sympa itself. It contains the
current version of your Sympa service and is used to detect upgrades and trigger
maintenance procedures such as database structure changes.

yohaa.com 3
oal.com 5

2.4 Spools

See 7.6, page 62 for spool definition in sympa.conf.

– /usr/local/sympa-os/spool/auth/
For storing messages until they have been confirmed.

– /usr/local/sympa-os/spool/bounce/
For storing incoming bouncing messages.

– /usr/local/sympa-os/spool/digest/
For storing lists’ digests before they are sent.

– /usr/local/sympa-os/spool/mod/
For storing unmoderated messages.

– /usr/local/sympa-os/spool/msg/
For storing incoming messages (including commands).

– /usr/local/sympa-os/spool/msg/bad/
Sympa stores rejected messages in this directory

– /usr/local/sympa-os/spool/distribute/
For storing message ready for distribution. This spool is used only if the installation
run 2 sympa.pl daemon, one for commands, one for messages.

– /usr/local/sympa-os/spool/distribute/bad/
Sympa stores rejected messages in this directory

– /usr/local/sympa-os/spool/task/
For storing all created tasks.

– /usr/local/sympa-os/spool/outgoing/
sympa.pl dumps messages in this spool to await archiving by archived.pl.

– /usr/local/sympa-os/spool/topic/
For storing topic information files.

2.5. ROLES AND PRIVILEGES 25

2.5 Roles and privileges

You can assign roles to users (via their email addresses) at different level in Sympa ;
privileges are associated (or can be associated) to these roles. We list these roles below
(from the most powerful to the less), along with the relevent privileges.

2.5.1 (Super) listmasters

These are the persons administrating the service, defined in the sympa.conf file. They
inherit the listmaster role in virtual hosts and are the default set of listmasters for virtual
hosts.

2.5.2 (Robot) listmasters

You can define a different set of listmasters at a virtual host level (in the robot.conf
file). They are responsible for moderating mailing lists creation (if list creation is confi-
gured this way), editing default templates, providing help to list owners and modera-
tors. Users defined as listmasters get a privileged access to Sympa web interface. List-
masters also inherit the privileges of list owners (for any list defined in the virtual host),
but not the moderator privileges.

2.5.3 Privileged list owners

The first defined privileged owner is the person who requested the list creation. Later
it can be changed or extended. They inherit (basic) owners privileges and are also
responsible for managing the list owners and editors themselves (via the web interface).
With Sympa’d default behavior, privileged owners can edit more list parameters than
(basic) owners can do ; but this can be customized via the edit-list.conf file.

2.5.4 (Basic) list owners

They are responsible for managing the members of the list, editing the list configuration
and templates. Owners (and privileged owners) are defined in the list config file.

26 CHAPITRE 2. WHAT DOES SYMPA CONSIST OF ?

2.5.5 Moderators (also called Editors)

Moderators are responsible for the messages distributed in the mailing list (as opposed
to owners who look after list members). Moderators are active if the list has been setup
as a moderated mailing list. If no moderator is defined for the list, then list owners will
inherit the moderator role.

2.5.6 Subscribers (or list members)

Subscribers are the persons who are member of a mailing list ; they either subscribed,
or got added directly by the listmaster or via a datasource (LDAP, SQL, another list,...).
These subscribers receive messages posted in the list (unless they have set the nomail
option) and have special privileges to post in the mailing list (unless it is a newsletter).
Most privileges a subscriber may have is not hardcoded in Sympa but expressed via the
so-called authorization scenarios (see 14, page 143).

Chapitre 3

Installing Sympa

Sympa is a program written in PERL. It also calls a short program written in C for tasks
which it would be unreasonable to perform via an interpreted language.

3.1 Obtaining Sympa, related links

The Sympa distribution is available from http ://www.sympa.org. All important
resources are referenced there :

– sources
– RELEASE NOTES
– .rpm and .deb packages for Linux
– user mailing list (see 1.6, page 20)
– contributions
– ...

3.2 Prerequisites

Sympa installation and configuration are relatively easy tasks for experienced UNIX
users who have already installed PERL packages.

Note that most of the installation time will involve putting in place the prerequisites,
if they are not already on the system. No more than a handful of ancillary tools are
needed, and on recent UNIX systems their installation is normally very straightforward.
We strongly advise you to perform installation steps and checks in the order listed
below ; these steps will be explained in detail in later sections.

27

http://www.sympa.org

28 CHAPITRE 3. INSTALLING SYMPA

– identification of host system characteristics
– installation of DB Berkeley module (already installed on most UNIX systems)
– installing a RDBMS (Oracle, MySQL, SQLite, Sybase or PostgreSQL) and creating

Sympa’s Database. This is required for using the web interface for Sympa. Please
refers to Sympa and its database section (8, page 79).

– installation of libxml 21, required by the LibXML perl module.
– installation of CPAN CPAN (Comprehensive PERL Archive Network)2 modules
– creation of a UNIX user

3.2.1 System requirements

You should have a UNIX system that is more or less recent in order to be able to use
Sympa. In particular, it is necessary that your system have an ANSI C compiler (in
other words, your compiler should support prototypes) ;

Sympa has been installed and tested on the following systems, therefore you should not
have any special problems :

– Linux (various distributions)
– FreeBSD 2.2.x and 3.x
– NetBSD
– Digital UNIX 4.x
– Solaris 2.5 and 2.6
– AIX 4.x
– HP-UX 10.20

Anyone willing to port it to NT ? ;-)

Finally, most UNIX systems are now supplied with an ANSI C compiler ; if this is not
the case, you can install the gcc compiler, which you will find on the nearest GNU site,
for example in France3.

To complete the installation, you should make sure that you have a sufficiently recent
release of the sendmail MTA, i.e. release 8.9.x4 or a more recent release. You may
also use postfix or qmail.

3.2.2 Install Berkeley DB (NEWDB)

UNIX systems often include a particularly unsophisticated mechanism to manage in-
dexed files. This consists of extensions known as dbm and ndbm, which are unable to

1http ://xmlsoft.org/
2http ://www.perl.com/CPAN
3ftp ://ftp.oleane.net/pub/mirrors/gnu/
4ftp ://ftp.oleane.net/pub/mirrors/sendmail-ucb/

http://xmlsoft.org/
http://www.perl.com/CPAN
ftp://ftp.oleane.net/pub/mirrors/gnu/
ftp://ftp.oleane.net/pub/mirrors/sendmail-ucb/

3.2. PREREQUISITES 29

meet the needs of many more recent programs, including Sympa, which uses the DB
package initially developed at the University of California in Berkeley, and which is
now maintained by the company Sleepycat software5. Many UNIX systems like Li-
nux, FreeBSD or Digital UNIX 4.x have the DB package in the standard version. If not
you should install this tool if you have not already done so.

You can retrieve DB on the Sleepycat site6, where you will also find clear installation
instructions.

3.2.3 Install PERL and CPAN modules

To be able to use Sympa you must have release 5.004 03 or later of the PERL language,
as well as several CPAN modules.

At make time, the check perl modules.pl script is run to check for installed ver-
sions of required PERL and CPAN modules. If a CPAN module is missing or out of
date, this script will install it for you.

You can also download and install CPAN modules yourself. You will find a current
release of the PERL interpreter in the nearest CPAN archive. If you do not know where
to find a nearby site, use the CPAN multiplexor7 ; it will find one for you.

3.2.4 Required CPAN modules

The following CPAN modules required by Sympa are not included in the standard
PERL distribution. At make time, Sympa will prompt you for missing Perl modules
and will attempt to install the missing ones automatically ; this operation requires root
privileges.

Because Sympa features evolve from one relaease to another, the following list of mo-
dules might not be up to date :

– DB File (v. 1.50 or later)
– Digest-MD5
– MailTools (version 1.13 o later)
– IO-stringy
– MIME-tools (may require IO/Stringy)
– MIME-Base64
– CGI
– File-Spec
– libintl-perl

5http ://www.sleepycat.com
6http ://www.sleepycat.com/
7http ://www.perl.com/CPAN/src/latest.tar.gz

http://www.sleepycat.com
http://www.sleepycat.com/
http://www.perl.com/CPAN/src/latest.tar.gz

30 CHAPITRE 3. INSTALLING SYMPA

– Template-Toolkit

Since release 2, Sympa requires an RDBMS to work properly. It stores users’ subscrip-
tions and preferences in a database. Sympa is also able to extract user data from within
an external database. These features require that you install database-related PERL li-
braries. This includes the generic Database interface (DBI) and a Database Driver for
your RDBMS (DBD) :

– DBI (DataBase Interface)
– DBD (DataBase Driver) related to your RDBMS (e.g. Msql-Mysql-modules for

MySQL)

If you plan to interface Sympa with an LDAP directory to build dynamical mailing lists,
you need to install PERL LDAP libraries :

– Net : :LDAP (perlldap).

Passwords in Sympa database can be crypted ; therefore you need to install the follo-
wing reversible cryptography library :

– CipherSaber

For performence concerns, we recommend using WWSympa as a persistent CGI, using
FastCGI. Therefore you need to install the following Perl module :

– FCGI

If you want to Download Zip files of list’s Archives, you’ll need to install perl Module
for Archive Management :

– Archive : :Zip

3.2.5 Create a UNIX user

The final step prior to installing Sympa : create a UNIX user (and if possible a group)
specific to the program. Most of the installation will be carried out with this account.
We suggest that you use the name sympa for both user and group.

Numerous files will be located in the Sympa user’s login directory. Throughout
the remainder of this documentation we shall refer to this login directory as
/usr/local/sympa-os.

3.3. COMPILATION AND INSTALLATION 31

3.3 Compilation and installation

Before using Sympa, you must customize the sources in order to specify a small number
of parameters specific to your installation.

First, extract the sources from the archive file, for example in the ~sympa/src/ di-
rectory : the archive will create a directory named sympa-5.3a.10/ where all the
useful files and directories will be located. In particular, you will have a doc/ directory
containing this documentation in various formats ; a sample/ directory containing a
few examples of configuration files ; a locale/ directory where multi-lingual mes-
sages are stored ; and, of course, the src/ directory for the mail robot and wwsympa for
the web interface.

Example :

su -
$ gzip -dc sympa-5.3a.10.tar.gz | tar xf -

Now you can run the installation process :

$./configure
$ make
$ make install

configure will build the Makefile ; it recognizes the following command-line argu-
ments :

– - - prefix=PREFIX, the Sympa homedirectory (default /home/sympa/)
– - - with-bindir=DIR, user executables in DIR (default /home/sympa/bin/)
queue and bouncequeue programs will be installed in this directory. If sendmail
is configured to use smrsh (check the mailer prog definition in your sendmail.cf),
this should point to /etc/smrsh. This is probably the case if you are using Linux
RedHat.

– - - with-sbindir=DIR, system admin executables in DIR (default
/home/sympa/bin)

– - - with-libexecdir=DIR, program executables in DIR (default
/home/sympa/bin)

– - - with-cgidir=DIR, CGI programs in DIR (default /home/sympa/bin)
– - - with-iconsdir=DIR, web interface icons in DIR (default /home/httpd/icons)
– - - with-datadir=DIR, default configuration data in DIR (default

/home/sympa/bin/etc)
– - - with-confdir=DIR, Sympa main configuration files in DIR (default /etc)
sympa.conf and wwsympa.conf will be installed there.

– - - with-expldir=DIR, modifiable data in DIR (default /home/sympa/expl/)
– - - with-libdir=DIR, code libraries in DIR (default /home/sympa/bin/)

32 CHAPITRE 3. INSTALLING SYMPA

– - - with-mandir=DIR, man documentation in DIR (default /usr/local/man/)
– - - with-docdir=DIR, man files in DIR (default /home/sympa/doc/)
– - - with-initdir=DIR, install System V init script in DIR (default

/etc/rc.d/init.d)
– - - with-lockdir=DIR, create lock files in DIR (default /var/lock/subsys)
– - - with-piddir=DIR, create .pid files in DIR (default /home/sympa/)
– - - with-etcdir=DIR, Config directories populated by the user are in DIR (de-

fault /home/sympa/etc)
– - - with-localedir=DIR, create language files in DIR (default

/home/sympa/locale)
– - - with-scriptdir=DIR, create script files in DIR (default /home/sympa/script)
– - - with-sampledir=DIR, create sample files in DIR (default

/home/sympa/sample)
– - - with-spooldir=DIR, create directory in DIR (default /home/sympa/spool)
– - - with-perl=FULLPATH, set full path to Perl interpreter (default /usr/bin/perl)
– - - with-openssl=FULLPATH, set path to OpenSSL (default

/usr/local/ssl/bin/openssl)
– - - with-user=LOGI, set sympa user name (default sympa)

Sympa daemons are running under this UID.
– - - with-group=LOGIN, set sympa group name (default sympa)

Sympa daemons are running under this UID.
– - - with-sendmail aliases=ALIASFILE, set aliases file to be used by Sympa

(default /etc/mail/sympa aliases). Set to ’none’ to disable alias management (You
can overright this value at runtime giving its value in sympa.conf)

– - - with-virtual aliases=ALIASFILE, set postfix virtual file to be used by
Sympa (default /etc/mail/sympa virtual)

This is used by the alias manager.pl script :
– - - with-newaliases=FULLPATH, set path to sendmail newaliases command (de-

fault /usr/bin/newaliases)
– - - with-newaliases arg=ARGS, set arguments to newaliases command (default

NONE)
This is used by the postfix manager.pl script :

– - - with-postmap=FULLPATH, set path to postfix postmap command (default
/usr/sbin/postmap)

– - - with-postmap arg=ARGS, set arguments to postfix postmap command (de-
fault NONE)

– - - enable-secure, install wwsympa to be run in a secure mode, without suidperl
(default disabled)

make will build a few binaries (queue, bouncequeue and aliaswrapper) and help
you install required CPAN modules.

make install does the installation job. It it recognizes the following option :

– DESTDIR, can be set in the main Makefile to install sympa in DESTDIR/DIR (ins-
tead of DIR). This is useful for building RPM and DEB packages.

3.4. ROBOT ALIASES 33

Since version 3.3 of Sympa colors are sympa.conf parameters (see 7.1.9, page 51)

If everything goes smoothly, the ~sympa/bin/ directory will contain various PERL
programs as well as the queue binary. You will remark that this binary has the set-uid-
on-exec bit set (owner is the sympa user) : this is deliberate, and indispensable if Sympa
is to run correctly.

3.3.1 Choosing directory locations

All directories are defined in the /etc/sympa.conf file, which is read by Sympa at
runtime. If no sympa.conf file was found during installation, a sample one will be
created. For the default organization of directories, please refer to 2.1, page 21.

It would, of course, be possible to disperse files and directories to a number of different
locations. However, we recommend storing all the directories and files in the sympa
user’s login directory.

These directories must be created manually now. You can use restrictive authorizations
if you like, since only programs running with the sympa account will need to access
them.

3.4 Robot aliases

See Robot aliases , 6.1, page 45)

3.5 Logs

Sympa keeps a trace of each of its procedures in its log file. However, this requires
configuration of the syslogd daemon. By default Sympa will use the local1 facility
(syslog parameter in sympa.conf). WWSympa’s logging behaviour is defined by the
log facility parameter in wwsympa.conf (by default the same facility as Sympa).
To this end, a line must be added in the syslogd configuration file
(/etc/syslog.conf). For example :

local1.* /var/log/sympa

Then reload syslogd.

Depending on your platform, your syslog daemon may use either a UDP or a UNIX
socket. Sympa’s default is to use a UNIX socket ; you may change this behavior by

34 CHAPITRE 3. INSTALLING SYMPA

editing sympa.conf’s log socket type parameter (7.3.3, page 56). You can test log
feature by using testlogs.pl.

Chapitre 4

Running Sympa

4.1 sympa.pl

sympa.pl is the main daemon ; it processes mail commands and is in charge of mes-
sages distribution.

sympa.pl recognizes the following command line arguments :

– - - debug — -d
Sets Sympa in debug mode and keeps it attached to the terminal. Debugging infor-
mation is output to STDERR, along with standard log information. Each function
call is traced. Useful while reporting a bug.

– service process command — process message — process creation
Sets Sympa daemon in way it process only message distribution (process message)
or in way it process only command (process command) or to process list creation
requests (process creation)

– - - config config file — -f config file

Forces Sympa to use an alternative configuration file. Default behavior is to use the
configuration file as defined in the Makefile ($CONFIG).

– - - mail — -m
Sympa will log calls to sendmail, including recipients. Useful for keeping track of
each mail sent (log files may grow faster though).

– - - lang catalog — -l catalog

Set this option to use a language catalog for Sympa. The corresponding catalog file
must be located in ~sympa/locale directory.

– - - keepcopy recipient directory — -k recipient directory

This option tells Sympa to keep a copy of every incoming message, instead of dele-
ting them. recipient directory is the directory to store messages.

/home/sympa/bin/sympa.pl

35

36 CHAPITRE 4. RUNNING SYMPA

– - - create list - - robot robotname - - input file
/path/to/list file.xml

Create the list described by the xml file, see 19.3, page 183.
– - - close list listname@robot

Close the list (changing its status to closed), remove aliases (if sendmail aliases pa-
rameter was set) and remove subscribers from DB (a dump is created in the list di-
rectory to allow restoring the list). See ??, page ?? when you are in a family context.

– - - dump listname | ALL

Dumps subscribers of a list or all lists. Subscribers are dumped in
subscribers.db.dump.

– - - import listname

Import subscribers in the listname list. Data are read from STDIN.
– - - lowercase

Lowercases e-mail addresses in database.
– - - help — -h

Print usage of sympa.pl.
– - - make alias file

Create an aliases file in /tmp/ with all list aliases (only list which status is ’open’). It
uses the list aliases.tt2 template.

– - - version — -v
Print current version of Sympa.

– - - instanciate family familyname robotname - - input file
/path/to/family file.xml

Instantiate the family familyname. See 20, page 187.
– - - close family familyname - - robot robotname

Close the familyname family. See 20.2.4, page 193.
– - - add list familyname - - robot robotname - - input file
/path/to/list file.xml

Add the list described in the XML file to the familyname family. See 20.2.5,
page 193.

– - - modify list familyname - - robot robotname - - input file
/path/to/list file.xml

Modify the existing family list, with description contained in the XML file. See
20.2.7, page 194.

– - - sync include listaddress

Trigger an update of list members, usefull if the list uses external data sources.
– - - upgrade - - from=X - -to=Y

Runs Sympa maintenance script to upgrate from version X to version Y
– - - reload list config - -list=mylist@dom

Recreates all config_bin files. You should run this command if you edit authoriza-
tion scenarios. The list parameter is optional.

4.2 INIT script

The make install step should have installed a sysV init script in your
/etc/rc.d/init.d/ directory (you can change this at configure time with the
--with-initdir option). You should edit your runlevels to make sure Sympa starts

4.3. STOPPING SYMPA AND SIGNALS 37

after Apache and MySQL. Note that MySQL should also start before Apache because
of wwsympa.fcgi.

This script starts these deamons : sympa.pl, task manager.pl, archived.pl and boun-
ced.pl.

4.3 Stopping Sympa and signals

kill -TERM

When this signal is sent to sympa.pl (kill -TERM), the daemon is stopped ending
message distribution in progress and this can be long (for big lists). If kill -TERM is
used, sympa.pl will stop immediatly whatever a distribution message is in progress. In
this case, when sympa.pl restart, message will distributed many times.

kill -HUP

When this signal is sent to sympa.pl (kill -HUP), it switchs of the --mail logging
option and continues current task.

38 CHAPITRE 4. RUNNING SYMPA

Chapitre 5

Upgrading Sympa

Sympa upgrade is a relatively riskless operations, mainly because the install process
preserves your customizations (templates, configuration, authorization scenarios,...)
and also because Sympa automates a few things (DB update, CPAN modules instal-
lation).

5.1 Incompatible changes

New features, changes and bug fixes are summarized in the NEWS file, part of the tar.gz
(the Changelog file is a complete log file of CVS changes).

Sympa is a long-term project, so some major changes may need some extra work. The
following list is well kown changes that require some attention :
– version 5.1 (August 2005) use XHTML and CSS in web templates
– version 4.2b3 (August 2004) introduce TT2 template format
– version 4.0a5 (September 2003) change auth.conf (no default anymore so you may

have the create this file)
– version 3.3.6b2 (May 2002) the list parameter user data source as a new value in-

clude2 which is the recommended value for any list.
The file NEWS list all changes and of course, all changes that may require some attention
from the installer. As mentionned at the beginning of this file, incompatible changes
are preceded by ’*****’. While running the make install Sympa will detect the
previously installed version and will prompt you with incompatible changes between
both versions of the software. You can interrupt the install process at that stage if you
are too frightened. Output of the make install :

You are upgrading from Sympa 4.2
You should read CAREFULLY the changes listed below ; they might be incompatible changes :
<RETURN>

39

40 CHAPITRE 5. UPGRADING SYMPA

***** require new perlmodule XML-LibXML

***** You should update your DB structure (automatically performed by Sympa with MySQL), adding the following table (mySQL example) :
***** CREATE TABLE admin_table (
***** list_admin varchar(50) NOT NULL,
***** user_admin varchar(100) NOT NULL,
***** role_admin enum(’listmaster’,’owner’,’editor’) NOT NULL,
***** date_admin datetime NOT NULL,
***** update_admin datetime,
***** reception_admin varchar(20),
***** comment_admin varchar(150),
***** subscribed_admin enum(’0’,’1’),
***** included_admin enum(’0’,’1’),
***** include_sources_admin varchar(50),
***** info_admin varchar(150),
***** profile_admin enum(’privileged’,’normal’),
***** PRIMARY KEY (list_admin, user_admin,role_admin),
***** INDEX (list_admin, user_admin,role_admin)
*****);

***** Extend the generic_sso feature ; Sympa is now able to retrieve the user email address in a LDAP directory
<RETURN>

5.2 CPAN modules update

Required and optional perl modules (CPAN) installation is automatically handled at
the make time. You are asked before each module is installed. For optional modules,
associated features are listed.

Output of the make command :

Checking for REQUIRED modules:
--
perl module from CPAN STATUS
----------- --------- ------
Archive::Zip Archive-Zip OK (1.09 >= 1.05)
CGI CGI OK (2.89 >= 2.52)
DB_File DB_FILE OK (1.806 >= 1.75)
Digest::MD5 Digest-MD5 OK (2.20 >= 2.00)
FCGI FCGI OK (0.67 >= 0.67)
File::Spec File-Spec OK (0.83 >= 0.8)
IO::Scalar IO-stringy OK (2.104 >= 1.0)
LWP libwww-perl OK (5.65 >= 1.0)
Locale::TextDomain libintl-perl OK (1.10 >= 1.0)
MHonArc::UTF8 MHonArc version is too old (< 2.4.6).
>>>>>>> You must update "MHonArc" to version "" <<<<<<.
Setting FTP Passive mode

5.3. DATABASE STRUCTURE UPDATE 41

Description:
Install module MHonArc::UTF8 ? n
MIME::Base64 MIME-Base64 OK (3.05 >= 3.03)
MIME::Tools MIME-tools OK (5.411 >= 5.209)
Mail::Internet MailTools OK (1.60 >= 1.51)
Regexp::Common Regexp-Common OK (2.113 >= 1.0)
Template Template-ToolkitOK (2.13 >= 1.0)
XML::LibXML XML-LibXML OK (1.58 >= 1.0)

Checking for OPTIONAL modules:
--
perl module from CPAN STATUS
----------- --------- ------
Bundle::LWP LWP OK (1.09 >= 1.09)
Constant subroutine CGI::XHTML_DTD redefined at /usr/lib/perl5/5.8.0/constant.pm line 108, <STDIN> line 1.
CGI::Fast CGI CGI::Fast doesn’t return 1 (check it).
Crypt::CipherSaber CipherSaber OK (0.61 >= 0.50)
DBD::Oracle DBD-Oracle was not found on this system.
Description: Oracle database driver, required if you connect to a Oracle database.
Install module DBD::Oracle ?

5.3 Database structure update

Whatever RDBMS you are using (mysql, SQLite, Pg, Sybase or Oracle) Sympa will
check every database tables and fields. If one is missing sympa.pl will not start. If
you are using mysql Sympa will also check field types and will try to change them
(or create them) automatically ; assuming that the DB user configured has sufficient
privileges. If You are not using Mysql or if the DB user configured in sympa.conf
does have sufficient privileges, then you should change the database structure yourself,
as mentionned in the NEWS file.

Output of Sympa logs :

Table admin_table created in database sympa
Field ’comment_admin’ (table ’admin_table’ ; database ’sympa’) was NOT found. Attempting to add it...
Field comment_admin added to table admin_table
Field ’date_admin’ (table ’admin_table’ ; database ’sympa’) was NOT found. Attempting to add it...
Field date_admin added to table admin_table
Field ’include_sources_admin’ (table ’admin_table’ ; database ’sympa’) was NOT found. Attempting to add it...
Field include_sources_admin added to table admin_table
Field ’included_admin’ (table ’admin_table’ ; database ’sympa’) was NOT found. Attempting to add it...
Field included_admin added to table admin_table
Field ’info_admin’ (table ’admin_table’ ; database ’sympa’) was NOT found. Attempting to add it...
Field info_admin added to table admin_table
Field ’list_admin’ (table ’admin_table’ ; database ’sympa’) was NOT found. Attempting to add it...
Field list_admin added to table admin_table
Field ’profile_admin’ (table ’admin_table’ ; database ’sympa’) was NOT found. Attempting to add it...

42 CHAPITRE 5. UPGRADING SYMPA

Field profile_admin added to table admin_table
Field ’reception_admin’ (table ’admin_table’ ; database ’sympa’) was NOT found. Attempting to add it...
Field reception_admin added to table admin_table
Field ’role_admin’ (table ’admin_table’ ; database ’sympa’) was NOT found. Attempting to add it...
Field role_admin added to table admin_table
Field ’subscribed_admin’ (table ’admin_table’ ; database ’sympa’) was NOT found. Attempting to add it...
Field subscribed_admin added to table admin_table
Field ’update_admin’ (table ’admin_table’ ; database ’sympa’) was NOT found. Attempting to add it...
Field update_admin added to table admin_table
Field ’user_admin’ (table ’admin_table’ ; database ’sympa’) was NOT found. Attempting to add it...
Setting list_admin,user_admin,role_admin fields as PRIMARY
Field user_admin added to table admin_table

You might need, for some reason, to make Sympa run the migration procedure from
version X to version Y. This procedure is run automatically by sympa.pl --upgrade
when it detects that /data structure.version is older than the current version, but
you can also run trigger this procedure yourself :

sympa.pl --upgrade --from=4.1 --to=5.2

5.4 Preserving your customizations

Sympa comes with default configuration files (templates, scenarios,...) that will
be installed in the /usr/local/sympa-os/bin directory. If you need to custo-
mize some of them, you should copy the file first in a safe place, ie in the
/usr/local/sympa-os/etc directory. If you do so, the Sympa upgrade process will
preserve your site customizations.

5.5 Running 2 Sympa versions on a single server

This can be very convenient to have a stable version of Sympa and a fresh version for
test purpose, both running on the same server.

Both sympa instances must be completely partitioned, unless you want the make pro-
duction mailing lists visible through the test service.

The biggest part of the partitioning is achieved while running the ./configure. Here
is a sample call to ./configure on the test server side :

./configure --prefix=/home/sympa-dev \
--with-confdir=/home/sympa-dev/etc \
--with-mandir=/home/sympa-dev/man \
--with-initdir=/home/sympa-dev/init \

--with-piddir=/home/sympa-dev/pid

5.6. MOVING TO ANOTHER SERVER 43

--with-lockdir=/home/sympa-dev/lock \
--with-sendmail_aliases=/home/sympa-dev/etc/sympa_aliases

You can also customize more parameters via the
/home/sympa-dev/etc/sympa.conf file.

If you wish to share the same lists in both Sympa instances, then some parameters
should have the same value : home, db name, arc path

5.6 Moving to another server

If you’re upgrading and moving to another server at the same time, we recommend you
first to stop the operational service, move your data and then upgrade Sympa on the
new server. This will guarantee that Sympa upgrade procedures have been applied on
the data.

The migration process requires that you move the following data from the old server to
the new one :
– the user database. If using mysql you can probably just stop mysqld and copy the
/var/lib/mysql/sympa/ directory to the new server.

– the /usr/local/sympa-os/expl directory that contains list config
– the directory that contains the spools
– the directory and /usr/local/sympa-os/etc/sympa.conf and wwsympa.conf.

Sympa new installation create a file /usr/local/sympa-os/etc/sympa.conf
(see 7) and initialize randomly the cookie parameter. Changing this parameter will
break all passwords. When upgrading Sympa on a new server take care that you start
with the same value of this parameter, otherwise you will have troubles !

– the web archives
In some case, you may want to install the new version and run it for a few days before
switching the existing service to the new Sympa server. In this case perform a new
installation with an empty database and play with it. When you decide to move the
existing service to the new server :

1. stop all sympa processus on both servers,

2. transfert the database

3. edit the /data structure.version on the new server ; change the version va-
lue to reflect the old number

4. start sympa.pl --upgrade, it will upgrade the database structure according the
hop you do.

44 CHAPITRE 5. UPGRADING SYMPA

Chapitre 6

Mail aliases

Mail aliases are required in Sympa for sympa.pl to receive mail commands and
list messages. Management of these aliases management will depend on the MTA
(sendmail, qmail, postfix, exim) you’re using, where you store aliases and whether
you are managing virtual domains or not.

6.1 Robot aliases

An electronic list manager such as Sympa is built around two processing steps :

– a message sent to a list or to Sympa itself (commands such as subscribe or unsub-
scribe) is received by the SMTP server. The SMTP server, on reception of this mes-
sage, runs the queue program (supplied in this package) to store the message in a
spool.

– the sympa.pl daemon, set in motion at system startup, scans this spool. As soon as it
detects a new message, it processes it and performs the requested action (distribution
or processing of a command).

To separate the processing of commands (subscription, unsubscription, help requests,
etc.) from the processing of messages destined for mailing lists, a special mail alias is
reserved for administrative requests, so that Sympa can be permanently accessible to
users. The following lines must therefore be added to the sendmail alias file (often
/etc/aliases) :

sympa : ”— /usr/local/sympa-os/bin/queue sympa@my.domain.org”
listmaster : ”— /usr/local/sympa-os/bin/queue listmas-
ter@my.domain.org”
bounce+* : ”— /usr/local/sympa-os/bin/bouncequeue

45

46 CHAPITRE 6. MAIL ALIASES

sympa@my.domain.org”
abuse-feedback-report : ”— /usr/local/sympa-os/bin/bouncequeue
sympa@my.domain.org”
sympa-request : postmaster
sympa-owner : postmaster

Note : if you run Sympa virtual hosts, you will need one sympa alias entry per virtual
host (see virtual hosts section, 15, page 153).

sympa-request should be the address of the robot administrator, i.e. a person who
looks after Sympa (here postmaster@cru.fr).

sympa-owner is the return address for Sympa error messages.

The alias bounce+* is dedicated to collect bounces where VERP (variable enve-
lope return path) was actived. It is useful if welcome return path unique or
remind return path unique or the verp rate parameter is no null for at least one
list.

The alias abuse-feedback-report is used for processing automatically feedback that res-
pect ARF format (Abuse Report Feedback) which is a draft to specify how end user
can complain about spam. It is mainly used by AOL.

Don’t forget to run newaliases after any change to the /etc/aliases file !

Note : aliases based on listserv (in addition to those based on sympa) can be ad-
ded for the benefit of users accustomed to the listserv and majordomo names. For
example :

listserv: sympa
listserv-request: sympa-request
majordomo: sympa
listserv-owner: sympa-owner

6.2 List aliases

For each new list, it is necessary to create up to six mail aliases (at least three). If
you managed to setup the alias manager (see next section) then Sympa will install
automatically the following aliases for you.

For example, to create the mylist list, the following aliases must be added :

6.3. ALIAS MANAGER 47

mylist : "|/usr/local/sympa-os/bin/queue mylist@my.domain.org"
mylist-request : "|/usr/local/sympa-os/bin/queue mylist-request@my.domain.org"
mylist-editor : "|/usr/local/sympa-os/bin/queue mylist-editor@my.domain.org"
mylist-owner : "|/usr/local/sympa-os/bin/bouncequeue mylist@my.domain.org
mylist-subscribe : "|/usr/local/sympa-os/bin/queue mylist-subscribe@my.domain.org"
mylist-unsubscribe : "|/usr/local/sympa-os/bin/queue mylist-unsubscribe@my.domain.org"

The address mylist-request should correspond to the person responsible for mana-
ging mylist (the owner). Sympa will forward messages for mylist-request to the
owner of mylist, as defined in the /usr/local/sympa-os/expl/mylist/config
file. Using this feature means you would not need to modify the alias file if the owner
of the list were to change.

Similarly, the address mylist-editor can be used to contact the list editors if any are
defined in /usr/local/sympa-os/expl/mylist/config. This address definition is
not compulsory.

The address mylist-owner is the address receiving non-delivery reports (note that
the -owner suffix can be customized, see 7.8.4, page 67). The bouncequeue program
stores these messages in the queuebounce directory. WWSympa ((see 1.2, page 17)
may then analyze them and provide a web access to them.

The address mylist-subscribe is an address enabling users to subscribe in a manner
which can easily be explained to them. Beware : subscribing this way is so straightfor-
ward that you may find spammers subscribing to your list by accident.

The address mylist-unsubscribe is the equivalent for unsubscribing. By the way,
the easier it is for users to unsubscribe, the easier it will be for you to manage your list !

6.3 Alias manager

The alias manager.pl script does aliases management. It is run by WWSympa and
will install aliases for a new list and delete aliases for closed lists.

The script expects the following arguments :

1. add — del

2. <list name>

3. <list domain>

Example : /usr/local/sympa-os/bin/alias manager.pl add mylistcru.fr

/usr/local/sympa-os/bin/alias manager.pl works on the alias file
as defined in sympa.conf) by the sendmail aliases variable (default is
/etc/mail/sympa aliases). You must refer to this aliases file in your sendmail.mc
(if using sendmail) :

48 CHAPITRE 6. MAIL ALIASES

define(‘ALIAS_FILE’, ‘/etc/aliases,/etc/mail/sympa_aliases’)dnl

Note that sendmail has requirements regarding the ownership and rights on both
sympa aliases and sympa aliases.db files (the later being created by sendmail
via the newaliases command). Anyhow these two files should be located in a direc-
tory, every path component of which being owned by and writable only by the root
user.

/usr/local/sympa-os/bin/alias manager.pl runs a newaliases command
(via aliaswrapper), after any changes to aliases file.

If you manage virtual domains with your mail server, then you might want to change
the form of aliases used by the alias manager. You can customize the list aliases
template that is parsed to generate list aliases (see18.8.8, page 175).

Note that you don’t need alias management if you use MTA functionalities such as
Postfix’ virtual transport. You can then disable alias management in Sympa by
positioning the sendmail aliases parameter to none.

A L. Marcotte has written a version of ldap alias manager.pl that is LDAP en-
abled. This script is distributed with Sympa distribution ; it needs to be customized
with your LDAP parameters.

6.4 Virtual domains

When using virtual domains with sendmail or postfix, you can’t refer to
mylist@my.domain.org on the right-hand side of an /etc/aliases entry. You need
to define an additional entry in a virtual table. You can also add a unique entry, with a
regular expression, for your domain.

With Postfix, you should edit the /etc/postfix/virtual.regexp file as follows :

/^(.*)@my.domain.org$/ my.domain.org-$1

Entries in the ’aliases’ file will look like this :

my.domain.org-sympa : ”—/usr/local/sympa-os/bin/queue
sympa@my.domain.org” my.domain.org-listA : ”—/usr/local/sympa-
os/bin/queue listA@my.domain.org”

With Sendmail, add the following entry to /etc/mail/virtusertable file :

@my.domain.org my.domain.org-%1%3

Chapitre 7

sympa.conf parameters

The /usr/local/sympa-os/etc/sympa.conf configuration file contains numerous
parameters which are read on start-up of Sympa. If you change this file, do not forget
that you will need to restart Sympa afterwards.

The /usr/local/sympa-os/etc/sympa.conf file contains directives in the follo-
wing format :

keyword value

Comments start with the # character at the beginning of a line. Empty lines are also
considered as comments and are ignored. There should only be one directive per line,
but their order in the file is of no importance.

7.1 Site customization

7.1.1 domain

This keyword is mandatory. It is the domain name used in the From: header in replies
to administrative requests. So the smtp engine (qmail, sendmail, postfix or whatever)
must recognize this domain as a local address. The old keyword host is still recognized
but should not be used anymore.

Example: domain cru.fr

49

50 CHAPITRE 7. SYMPA.CONF PARAMETERS

7.1.2 email

(Default value: sympa)

Username (the part of the address preceding the @ sign) used in the From: header in
replies to administrative requests.

Example: email listserv

7.1.3 listmaster

The list of e-mail addresses of listmasters (users authorized to perform global server
commands). Listmasters can be defined for each virtual host.

Example: listmaster postmaster@cru.fr,root@cru.fr

7.1.4 listmaster email

(Default value: listmaster)

Username (the part of the address preceding the @ sign) used in the listmaster email.
This parameter is useful if you want to run more than one sympa on the same host (a
sympa test for example).

If you change the default value, you must modify the sympa aliases too.

For example, if you put :

listmaster listmaster-test

you must modify the sympa aliases like this :

listmaster-test : ”— /home/sympa/bin/queue listmaster@my.domain.org”

See 6.1,page 45 for all aliases.

7.1.5 wwsympa url

(Default value: http ://<host>/wws)

7.1. SITE CUSTOMIZATION 51

This is the root URL of WWSympa.

Example: wwsympa url https ://my.server/sympa

7.1.6 soap url

This is the root URL of Sympa’s SOAP server. Sympa’s WSDL document refer to this
URL in its service section.

Example: soap url http ://my.server/sympasoap

7.1.7 spam protection

spam protection (Default value: javascript)

There is a need to protection Sympa web site against spambot which collect email
adresse in public web site. Various method are availble into Sympa and you can choose
it with spam protection and web archive spam protection parameters. Possible
value are :
– javascript : the adresse is hidden using a javascript. User who enable javascript can

see a nice mailto adresses where others have nothing.
– at : the @ char is replaced by the string ” AT ”.
– none : no protection against spammer.

7.1.8 web archive spam protection

(Default value: cookie)

Idem spam protection but restricted to web archive. A additional value is available :
cookie which mean that users must submit a small form in order to receive a cookie
before browsing archives. This block all robot, even google and co.

7.1.9 color 0, color 1 .. color 15

They are the color definition for web interface. These parameters can be overwritten
in each virtual host definition. The color are used in the CSS file and unfortunitly they
are also in use in some web templates. The sympa admin interface show every colors
in use.

52 CHAPITRE 7. SYMPA.CONF PARAMETERS

7.1.10 dark color, light color, text color, bg color,
error color, selected color, shaded color

Deprecated. They are the color definition for previous web interface. These parame-
ters are unused in 5.1 and higher version but still available.style.css, print.css, print-
preview.css and fullPage.css

7.1.11 logo html definition

This parameter allow you to insert in the left top page cor-
ner oa piece of html code, usually to insert la logo in the
page. This is a very basic but easy customization. Example:
logo html definition <img
style="float : left ; margin-top : 7px ; margin-left : 37px ;"
src="http :/logos/mylogo.jpg" alt="my compagnie" />

7.1.12 css path

Pre-parsed CSS files (let’s say static css files) can be installed using Sympa server skins
module. These CSS files are installed in a part of the web server that can be reached
without using sympa web engine. In order to do this edit the robot.conf file and set
the css path parameter. Then retart the server and use skins module from the ”admin
sympa” page to install preparsed CSS file. The in order to replace dynamic CSS by
these static files set the css url parameter.

After an upgrade, sympa.pl automatically updates the static CSS files with the
new installed css.tt2. Therefore it’s not a good place to store customized CSS files.

7.1.13 css url

By default, CSS files style.css, print.css, print-preview.css and fullPage.css are deli-
vred by Sympa web interface itself using a sympa action named css. URL look like
http ://foo.org/sympa/css/style.css . CSS file are made parsing a web tt2 file named
css.tt2. This allow dynamique definition of colors and in a near futur a complete defi-
nition of the skin, user preference skins etc.

In order to make sympa web interface faster, it is strongly recommended to install static
css file somewhere in your web site. This way sympa will deliver only one page insteed
of one page and four css page at each clic. This can be done using css url parameter.
The parameter must contain the URL of the directory where style.css, print.css, print-
preview.css and fullPage.css are installed. You can make your own a sophisticated new

7.1. SITE CUSTOMIZATION 53

skin editing these files. The server admin module include a CSS administration page
that can help you to install static CSS.

7.1.14 static content path

Some content may be delivred by http server (apache) without any need to be contro-
led or parserd by Sympa. They are stored in directory choosen with parameter sta-
tic content dir. Current Sympa version store in this directory subscribers pictures. La-
ter update will add style sheet, icons, ... The directory is created by Sympa.pl when
started. This parameter can be defined also in robot.conf

7.1.15 static content url

Content stored in directory specified by parameter static content url must be ser-
ved by http server under the URL specified by static content url. Check apache
configuration in order to make this directory available. This parameter can be defined
in robot.conf.

7.1.16 pictures feature

(Default value: off) Example: pictures feature on

Subscribers can upload their picture (from the subscriber option page) so reviewing
subsribers shows a gallery. This parameter defines the default for corresponding list
parameter but it does NOT allow to disable the feature globaly. If you want to disable
the feature for your whole site, you need to customize the edit-list.conf file to
disallow edition of the corresponding list parameter.

Pictures are stored in a directory specified by static content path parameter.

7.1.17 pictures max size

The maximum size of the uploaded picture file (bytes)

7.1.18 cookie

This string is used to generate MD5 authentication keys. It allows generated authenti-
cation keys to differ from one site to another. It is also used for reversible encryption

54 CHAPITRE 7. SYMPA.CONF PARAMETERS

of user passwords stored in the database. The presence of this string is one reason why
access to sympa.conf needs to be restricted to the Sympa user.

Note that changing this parameter will break all http cookies stored in users’ browsers,
as well as all user passwords and lists X509 private keys. To prevent a catastroph,
sympa.pl refuse to start if the cookie parameter was changed.

Example: cookie gh869jku5

7.1.19 create list

(Default value: public listmaster)

create list parameter is defined by an authorization scenario (see 14, page 143)

Defines who can create lists (or request list creations). Sympa will use the correspon-
ding authorization scenario.

Example: create list intranet

7.1.20 automatic list feature

(Default value: off) Example: automatic list feature on

If set to on, Sympa will enable automatic list creation through family instantiation (see
20.3, page 194.

7.1.21 automatic list creation

(Default value: none)

automatic list creation parameter is defined by an authorization scenario
(see 14, page 143)

If automatic list feature is activated, this parameter (corresponding to an autho-
rization scenario) defines who is allowed to use the automatic list creation feature.

7.2. DIRECTORIES 55

7.1.22 automatic list removal

(Default value:) Example: automatic list feature if empty

If set to if empty, then Sympa will remove automatically created mailing lists just
after their creartion, if they contain no list membe (see 20.3, page 194.

7.1.23 global remind

(Default value: listmaster)

global remind parameter is defined by an authorization scenario (see 14, page 143)

Defines who can run a REMIND * command.

7.2 Directories

7.2.1 home

(Default value: /usr/local/sympa-os/expl)

The directory whose subdirectories correspond to the different lists.

Example: home /home/sympa/expl

7.2.2 etc

(Default value: /usr/local/sympa-os/etc)

This is the local directory for configuration files (such as edit list.conf. It contains
5 subdirectories : scenari for local authorization scenarios ; mail tt2 for the site’s
local mail templates and default list templates ; web tt2 for the site’s local html tem-
plates ; global task models for local global task models ; and list task models
for local list task models

Example: etc /home/sympa/etc

56 CHAPITRE 7. SYMPA.CONF PARAMETERS

7.3 System related

7.3.1 syslog

(Default value: LOCAL1)

Name of the sub-system (facility) for logging messages.

Example: syslog LOCAL2

7.3.2 log level

(Default value: 0)

This parameter sets the verbosity of Sympa processes (including) in log files. With
level 0 only main operations are logged, in level 3 almost everything is logged.

Example: log level 2

7.3.3 log socket type

(Default value: unix)

Sympa communicates with syslogd using either UDP or UNIX sockets. Set
log socket type to inet to use UDP, or unix for UNIX sockets.

7.3.4 pidfile

(Default value: /usr/local/sympa-os/etc/sympa.pid)

The file where the sympa.pl daemon stores its process number. Warning : the sympa
user must be able to write to this file, and to create it if it doesn’t exist.

Example: pidfile /var/run/sympa.pid

7.4. SENDING RELATED 57

7.3.5 pidfile creation

(Default value: /usr/local/sympa-os/etc/sympa-creation.pid)

The file where the automatic list creation dedicated sympa.pl daemon stores its pro-
cess number. Warning : the sympa user must be able to write to this file, and to create
it if it doesn’t exist.

Example: pidfile creation /var/run/sympa-creation.pid

7.3.6 umask

(Default value: 027)

Default mask for file creation (see umask(2)). Note that it will be interpreted as an
octual value.

Example: umask 007

7.4 Sending related

7.4.1 distribution mode

(Default value: single) Use this parameter to determine if your installation nrun only
one sympa.pl daemon that process both messages to distribute and commands (single)
or if sympa.pl will fork to run two separate processus one dedicated to message distri-
bution and one dedicated to commands and message pre-processing (fork). The second
choice make a better priority processing for message distribution and faster command
response, but it require a bit more computer ressources.

Example: distribution mode fork

7.4.2 maxsmtp

(Default value: 20)

Maximum number of SMTP delivery child processes spawned by Sympa. This is the
main load control parameter.

58 CHAPITRE 7. SYMPA.CONF PARAMETERS

Example: maxsmtp 500

7.4.3 log smtp

(Default value: off)

Set logging of each MTA call. Can be overwritten by -m sympa option.

Example: log smtp on

7.4.4 use blacklist

(Default value: send,create list) Sympa provide a blacklist feature available for
list editor and list owner. The use blacklist parameter define which operation use
the blacklist. Search in black list is mainly usefull for the send service (distribution
of a message to the subscribers). You may use blacklist for more operation such as re-
view,archive etc but be aware that thoses web services needs fast response and blacklist
may require some ressources.

If you don’t want blacklist at all, define use blacklist none so the user interface to
manage blacklist will disappear from the web interface.

7.4.5 max size

(Default value: 5 Mb)

Maximum size allowed for messages distributed by Sympa. This may be customized
per virtual host or per list by setting the max size robot or list parameter.

Example: max size 2097152

7.4.6 misaddressed commands

(Default value: reject)

When a robot command is sent to a list, by default Sympa reject this message. This
feature can be turned off setting this parameter to ignore.

7.4. SENDING RELATED 59

7.4.7 misaddressed commands regexp

(Default value: (subscribe|unsubscribe|signoff))

This is the Perl regular expression applied on messages subject and body to detect
misaddressed commands, see misaddressed commands parameter above.

7.4.8 nrcpt

(Default value: 25)

Maximum number of recipients per sendmail call. This grouping factor makes it pos-
sible for the (sendmail) MTA to optimize the number of SMTP sessions for message
distribution. If needed, you can limit the number of receipient for a particular domain.
Check nrcpt by domain configuration file. (see 2.3, page 24)

7.4.9 avg

(Default value: 10)

Maximum number of different internet domains within addresses per sendmail call.

7.4.10 sendmail

(Default value: /usr/sbin/sendmail)

Absolute path to SMTP message transfer agent binary. Sympa expects this binary to be
sendmail compatible (postfix, Qmail and Exim binaries all provide sendmail compati-
bility).

Example: sendmail /usr/sbin/sendmail

7.4.11 sendmail args

(Default value: -oi -odi -oem)

Arguments passed to SMTP message transfer agent

60 CHAPITRE 7. SYMPA.CONF PARAMETERS

7.4.12 sendmail aliases

(Default value: defined by makefile, sendmail aliases | none)

Path of the alias file that contain all lists related aliases. It is recommended to create a
specific alias file so Sympa never overright the standard alias file but only a dedicated
file.You must refer to this aliases file in your sendmail.mc :

Set this parameter to ’none’ if you want to disable alias management in sympa (e.g. if
you use virtual transport with Postfix).

7.4.13 rfc2369 header fields

(Default value: help,subscribe,unsubscribe,post,owner,archive)

RFC2369 compliant header fields (List-xxx) to be added to distributed messages. These
header-fields should be implemented by MUA’s, adding menus.

7.4.14 remove headers

(Default value: Return-Receipt-To,Precedence,X-Sequence,Disposition-Notification-To)

This is the list of headers that Sympa should remove from outgoing messages. Use it,
for example, to ensure some privacy for your users by discarding anonymous options.
It is (for the moment) site-wide. It is applied before the Sympa, rfc2369 header fields,
and custom header fields are added.

Example: remove headers Resent-Date,Resent-From,Resent-To,Resent-Message-Id,Sender,Delivered-To,Return-Receipt-To,Precedence,X-Sequence,Disposition-Notification-To

7.4.15 anonymous headers fields

(Default value: Sender,X-Sender,Received,Message-id,From,X-Envelope-To,Resent-From,Reply-To,Organization,Disposition-Notification-To,X-Envelope-From,X-X-Sender)

This parameter defines the list of SMTP header fields that should be removed when a
mailing list is setup in anonymous mode (see 21.4.3, page 218).

7.4.16 list check smtp

(Default value: NONE)

7.5. QUOTAS 61

If this parameter is set with a SMTP server address, Sympa will check if alias with the
same name as the list you’re gonna create already exists on the SMTP server. It is robot
specific, i.e. you can specify a different SMTP server for every virtual host you are
running. This is needed if you are running Sympa on somehost.foo.org, but you handle
all your mail on a separate mail relay.

7.4.17 list check suffixes

(Default value: request,owner,unsubscribe)

This paramater is a comma-separated list of admin suffixes you’re using for
Sympa aliases, i.e. mylist-request, mylist-owner etc... This parameter is used with
list check smtp parameter. It is also used to check list names at list creation time.

7.4.18 urlize min size

(Default value: 10240)

This parameter is related to the URLIZE subscriber reception mode ; it defines the mi-
nimum size (in bytes) for MIME attachments to be urlized.

7.5 Quotas

7.5.1 default shared quota

The default disk quota (the unit is Kbytes) for lists’ document repository.

7.5.2 default archive quota

The default disk quota (the unit is Kbytes) for lists’ web archives.

62 CHAPITRE 7. SYMPA.CONF PARAMETERS

7.6 Spool related

7.6.1 spool

(Default value: /usr/local/sympa-os/spool)

The parent directory which contains all the other spools.

7.6.2 queue

The absolute path of the directory which contains the queue, used both by the queue
program and the sympa.pl daemon. This parameter is mandatory.

Example: /usr/local/sympa-os/spool/msg

7.6.3 queuedistribute

(Default value: /usr/local/sympa-os/spool/distribute)

This parameter is optional and retained solely for backward compatibility.

7.6.4 queuemod

(Default value: /usr/local/sympa-os/spool/moderation)

This parameter is optional and retained solely for backward compatibility.

7.6.5 queuedigest

This parameter is optional and retained solely for backward compatibility.

7.6.6 queueauth

(Default value: /usr/local/sympa-os/spool/auth)

7.6. SPOOL RELATED 63

This parameter is optional and retained solely for backward compatibility.

7.6.7 queueoutgoing

(Default value: /usr/local/sympa-os/spool/outgoing)

This parameter is optional and retained solely for backward compatibility.

7.6.8 queuetopic

(Default value: /usr/local/sympa-os/spool/topic)

This parameter is optional and retained solely for backward compatibility.

7.6.9 queuebounce

(Default value: /usr/local/sympa-os/spool/bounce)

Spool to store bounces (non-delivery reports) received by the bouncequeue pro-
gram via the mylist-owner (unless this suffix was customized) or bounce+* addresses
(VERP) . This parameter is mandatory and must be an absolute path.

7.6.10 queuetask

(Default value: /usr/local/sympa-os/spool/task)

Spool to store task files created by the task manager. This parameter is mandatory and
must be an absolute path.

7.6.11 queueautomatic

(Default value: none)

The absolute path of the directory which contains the queue for automatic list creation,
used both by the familyqueue program and the sympa.pl daemon. This parameter is
mandatory when enabling automatic list creation.

64 CHAPITRE 7. SYMPA.CONF PARAMETERS

Example: /usr/local/sympa-os/spool/msg

7.6.12 tmpdir

(Default value: /usr/local/sympa-os/spool/tmp)

Temporary directory used by OpenSSL and antiviruses.

7.6.13 sleep

(Default value: 5)

Waiting period (in seconds) between each scan of the main queue. Never set this value
to 0 !

7.6.14 clean delay queue

(Default value: 1)

Retention period (in days) for “bad” messages in spool (as specified by queue). Sympa
keeps messages rejected for various reasons (badly formatted, looping, etc.) in this
directory, with a name prefixed by BAD. This configuration variable controls the number
of days these messages are kept.

Example: clean delay queue 3

7.6.15 clean delay queuemod

(Default value: 10)

Expiration delay (in days) in the moderation spool (as specified by queuemod). Beyond
this deadline, messages that have not been processed are deleted. For moderated lists,
the contents of this spool can be consulted using a key along with the MODINDEX com-
mand.

7.7. INTERNATIONALIZATION RELATED 65

7.6.16 clean delay queueauth

(Default value: 3)

Expiration delay (in days) in the authentication queue. Beyond this deadline, messages
not enabled are deleted.

7.6.17 clean delay queuesubscribe

(Default value: 10)

Expiration delay (in days) in the subscription requests queue. Beyond this deadline,
requests not validated are deleted.

7.6.18 clean delay queuetopic

(Default value: 7)

Delay for keeping message topic files (in days) in the topic queue. Beyond this dead-
line, files are deleted.

7.6.19 clean delay queueautomatic

(Default value: 10)

Retention period (in days) for “bad” messages in automatic spool (as specified by
queueautomatic). Sympa keeps messages rejected for various reasons (badly format-
ted, looping, etc.) in this directory, with a name prefixed by BAD. This configuration
variable controls the number of days these messages are kept.

7.7 Internationalization related

7.7.1 localedir

(Default value: /usr/local/sympa-os/locale)

66 CHAPITRE 7. SYMPA.CONF PARAMETERS

The location of multilingual catalog files. Must correspond to
~src/locale/Makefile.

7.7.2 supported lang

Example: supported lang fr,en US,de,es

This parameter lists all supported languages (comma separated) for the user interface.
The default value will include all message catalogues but it can be narrowed by the
listmaster.

7.7.3 lang

(Default value: en US)

This is the default language for Sympa. The message catalog (.po, compiled as a .mo
file) located in the corresponding locale directory will be used.

7.7.4 web recode to

(OBSOLETE)

All web pages are now encoded in utf-8.

Note : if you recode web pages to utf-8, you should also add the following tag to your
mhonarc-ressources.tt2 file :

<TextEncode>
utf-8; MHonArc::UTF8::to_utf8; MHonArc/UTF8.pm
</TextEncode>

7.7.5 filesystem encoding

(Default value: utf-8)

Example: filesystem encoding iso-8859-1

Sympa (and Perl) use utf-8 as the its internal encoding and also for the encoding of
web pages. Because you might use a different character encoding on your filesystem,
you need to declare it, so that Sympa is able to properly decode strings.

7.8. BOUNCE RELATED 67

7.8 Bounce related

7.8.1 verp rate

(Default value: 0%)

See 24.1,page 242 for more information on VERP in Sympa.

When verp rate is null VERP is not used ; if verp rate is 100% VERP is alway in
use.

VERP requires plussed aliases to be supported and the bounce+* alias to be installed.

7.8.2 welcome return path

(Default value: owner)

If set to string unique, Sympa enable VERP for welcome message and bounce pro-
cessing will remove the subscription if a bounce is received for the welcome message.
This prevent to add bad address in subscriber list.

7.8.3 remind return path

(Default value: owner)

Like welcome return path, but relates to the remind message.

7.8.4 return path suffix

(Default value: -owner)

This defines the suffix that is appended to the list name to build the return-path of
messages sent to the lists. This is the address that will receive all non delivery reports
(also called bounces).

68 CHAPITRE 7. SYMPA.CONF PARAMETERS

7.8.5 expire bounce task

(Default value: daily)

This parameter tells what task will be used by task manager.pl to perform bounces
expiration. This task resets bouncing information for addresses not bouncing in the last
10 days after the latest message distribution.

7.8.6 purge orphan bounces task

(Default value: Monthly)

This parameter tells what task will be used by task manager.pl to perform bounces
cleaning. This task delete bounces archives for unsubscribed users.

7.8.7 eval bouncers task

(Default value: daily)

The task eval bouncers evaluate all bouncing users for all lists, and fill the field
bounce score suscriber in table suscriber table with a score. This score allow
the auto-management of bouncing-users.

7.8.8 process bouncers task

(Default value: monthly)

The task process bouncers execute configured actions on bouncing users, according to
their Score. The association between score and actions has to be done in List configu-
ration, This parameter define the frequency of execution for this task.

7.8.9 minimum bouncing count

(Default value: 10)

This parameter is for the bounce-score evaluation : the bounce-score is a note that
allows the auto-management of bouncing users. This score is evaluated with,in parti-
cular, the number of messages bounces received for the user. This parameter sets the
minimum number of these messages to allow the bounce-score evaluation for a user.

7.8. BOUNCE RELATED 69

7.8.10 minimum bouncing period

(Default value: 10)

Determine the minimum bouncing period for a user to allow his bounce-score evalua-
tion. Like previous parameter, if this value is too low, bounce-score will be 0.

7.8.11 bounce delay

(Default value: 0) Days

Another parameter for the bounce-score evaluation : This one represent the average
time (days) for a bounce to come back to sympa-server after a post was send to a list.
Usually bounces are arriving same day as the original message.

7.8.12 default bounce level1 rate

(Default value: 45)

This is the default value for bouncerslevel1 rate entry (??, page ??)

7.8.13 default bounce level2 rate

(Default value: 75)

This is the default value for bouncerslevel2 rate entry (21.5.3, page 224)

7.8.14 bounce email prefix

(Default value: bounce)

The prefix string used to build variable envelope return path (VERP). In the context of
VERP enabled, the local part of the address start with a constant string specified by
this parameter. The email is used to collect bounce. Plussed aliases are used in order
to introduce the variable part of the email that encode the subscriber address. This
parameter is useful if you want to run more than one sympa on the same host (a sympa
test for example).

If you change the default value, you must modify the sympa aliases too.

70 CHAPITRE 7. SYMPA.CONF PARAMETERS

For example, if you set it as :

bounce email prefix bounce-test

you must modify the sympa aliases like this :

bounce-test+* : ”— /home/sympa/bin/queuebounce
sympa@my.domain.org”

See 6.1,page 45 for all aliases.

7.8.15 bounce warn rate

(Default value: 30)

Site default value for bounce. The list owner receives a warning whenever a message
is distributed and the number of bounces exceeds this value.

7.8.16 bounce halt rate

(Default value: 50)

FOR FUTURE USE

Site default value for bounce. Messages will cease to be distributed if the number of
bounces exceeds this value.

7.8.17 default remind task

(Default value: 2month)

This parameter defines the default remind task list parameter.

7.9. TUNING 71

7.9 Tuning

7.9.1 cache list config

Format : none | binary file (Default value: none)

If this parameter is set to binary file, then Sympa processes will maintain a binary ver-
sion of the list config structure on disk (config.bin file). This file is bypassed whe-
never the config file changes on disk. Thanks to this method, the startup of Sympa
processes is much faster because it saves the time for parse all config files. The draw-
back of this method is that the list config cache could live for a long time (not recreated
when Sympa process restart) ; Sympa processes could still use authorization scenario
rules that have changed on disk in the meanwhile.

You should use list config cache if you are managing a big amount of lists (1000+).

7.9.2 sympa priority

(Default value: 1)

Priority applied to Sympa commands while running the spool.

Available since release 2.3.1.

7.9.3 request priority

(Default value: 0)

Priority for processing of messages for mylist-request, i.e. for owners of the list.

Available since release 2.3.3

7.9.4 owner priority

(Default value: 9)

Priority for processing messages for mylist-owner in the spool. This address will re-
ceive non-delivery reports (bounces) and should have a low priority.

72 CHAPITRE 7. SYMPA.CONF PARAMETERS

Available since release 2.3.3

7.9.5 default list priority

(Default value: 5)

Default priority for messages if not defined in the list configuration file.

Available since release 2.3.1.

7.10 Database related

The following parameters are needed when using an RDBMS, but are otherwise not
required :

7.10.1 update db field types

Format : update db field types auto | disabled

(Default value: auto)

This parameter defines if Sympa may automatically update database structure to match
the expected datafield types. This feature is only available with mysql.

7.10.2 db type

Format : db type mysql | SQLite | Pg | Oracle | Sybase

Database management system used (e.g. MySQL, Pg, Oracle)

This corresponds to the PERL DataBase Driver (DBD) name and is therefore case-
sensitive.

7.10.3 db name

(Default value: sympa)

7.10. DATABASE RELATED 73

Name of the database containing user information. See detailed notes on database struc-
ture, ??, page ??. If you are using SQLite, then this parameter is the DB file name.

7.10.4 db host

Database host name.

7.10.5 db port

Database port.

7.10.6 db user

User with read access to the database.

7.10.7 db passwd

Password for db user.

7.10.8 db timeout

This parameter is used for SQLite only.

7.10.9 db options

If these options are defined, they will be appended to the database connect string.

Example for MySQL :

db_options mysql_read_default_file=/home/joe/my.cnf;mysql_socket=tmp/mysql.sock-test

Check the related DBD documentation to learn about the available options.

74 CHAPITRE 7. SYMPA.CONF PARAMETERS

7.10.10 db env

Gives a list of environment variables to set before database connexion. This is a ’ ;’
separated list of variable assignments.

Example for Oracle :

db_env ORACLE_TERM=vt100;ORACLE_HOME=/var/hote/oracle/7.3.4

7.10.11 db additional subscriber fields

If your subscriber table database table has more fields than required by Sympa (be-
cause other programs access this table), you can make Sympa recognize these fields.
You will then be able to use them from within mail/web templates and authorization
scenarios (as [subscriber->field]). These fields will also appear in the list members re-
view page and will be editable by the list owner. This parameter is a comma-separated
list.

Example :

db_additional_subscriber_fields billing_delay,subscription_expiration

7.10.12 db additional user fields

If your user table database table has more fields than required by Sympa (because
other programs access this table), you can make Sympa recognize these fields. You will
then be able to use them from within mail/web templates (as [user->field]).

This parameter is a comma-separated list.

Example :

db_additional_user_fields address,gender

7.10.13 purge user table task

This parameter refers to the name of the task (Example: monthly) that will be regularly
run by the task manager.pl to remove entries in the user table table that have no
corresponding entries in the subscriber table table.

7.11. LOOP PREVENTION 75

7.11 Loop prevention

The following define your loop prevention policy for commands. (see 17.7, page 164)

7.11.1 loop command max

(Default value: 200)

The maximum number of command reports sent to an e-mail address. When it is rea-
ched, messages are stored with the BAD prefix, and reports are no longer sent.

7.11.2 loop command sampling delay

(Default value: 3600)

This parameter defines the delay in seconds before decrementing the counter of reports
sent to an e-mail address.

7.11.3 loop command decrease factor

(Default value: 0.5)

The decrementation factor (from 0 to 1), used to determine the new report counter
after expiration of the delay.

7.11.4 loop prevention regex

(Default value: mailer-daemon|sympa|listserv|majordomo|smartlist|mailman)

This regular expression is applied to messages sender address. If the sender address
matches the regular expression, then the message is rejected. The goal of this parameter
is to prevent loops between Sympa and other robots.

76 CHAPITRE 7. SYMPA.CONF PARAMETERS

7.12 S/MIME configuration

Sympa can optionally verify and use S/MIME signatures for security purposes. In this
case, the three first following parameters must be set by the listmaster (see 27.4.3,
page 251). The two others are optionnal.

7.12.1 openssl

The path for the openSSL binary file.

7.12.2 capath

The directory path use by openssl for trusted CA certificates.

A directory of trusted certificates. The certificates should have names of the form :
hash.0 or have symbolic links to them of this form (”hash” is the hashed certificate
subject name : see the -hash option of the openssl x509 utility). This directory should
be the same as the directory SSLCACertificatePath specified for mod ssl module for
Apache.

7.12.3 cafile

This parameter sets the all-in-one file where you can assemble the Certificates of Cer-
tification Authorities (CA) whose clients you deal with. These are used for Client Au-
thentication. Such a file is simply the concatenation of the various PEM-encoded Cer-
tificate files, in order of preference. This can be used alternatively and/or additionally
to capath.

7.12.4 key passwd

The password for list private key encryption. If not defined, Sympa assumes that list
private keys are not encrypted.

7.12.5 chk cert expiration task

States the model version used to create the task which regularly checks the certificate
expiration dates and warns users whose certificate have expired or are going to. To

7.13. ANTIVIRUS PLUG-IN 77

know more about tasks, see 17.8, page 164.

7.12.6 crl update task

Specifies the model version used to create the task which regurlaly updates the certifi-
cate revocation lists.

7.13 Antivirus plug-in

Sympa can optionally check incoming messages before delivering them, using an ex-
ternal antivirus solution. You must then set two parameters.

7.13.1 antivirus path

The path to your favorite antivirus binary file (including the binary file).

Example :
antivirus_path /usr/local/bin/uvscan

7.13.2 antivirus args

The arguments used by the antivirus software to look for viruses. You must set them so
as to get the virus name. You should use, if available, the ’unzip’ option and check all
extensions.

Example with uvscan :
antivirus_args --summary --secure

Example with fsav :
antivirus_args --dumb --archive

Exemple with AVP :
antivirus_path /opt/AVP/kavscanner
antivirus_args -Y -O- -MP -I0

Exemple with Sophos :
antivirus_path /usr/local/bin/sweep
antivirus_args -nc -nb -ss -archive

Exemple with Clam :
antivirus_path /usr/local/bin/clamscan
antivirus_args --stdout

78 CHAPITRE 7. SYMPA.CONF PARAMETERS

7.13.3 antivirus notify

sender — nobody

(Default value: sender)

This parameter tells if Sympa should notify the email sender when a virus has been
detected.

Chapitre 8

Sympa and its database

Most basic feature of Sympa will work without a RDBMS, but WWSympa and bounced
require a relational database. Currently you can use one of the following RDBMS :
MySQL, SQLite, PostgreSQL, Oracle, Sybase. Interfacing with other RDBMS requires
only a few changes in the code, since the API used, DBI1 (DataBase Interface), has
DBD (DataBase Drivers) for many RDBMS.

Sympa stores three kind of information in the database, each in one table :
– User preferences and passwords are stored in the user table table
– List subscription informations are stored in the subscriber table table, along with

subscription options. This table also contains the cache for included users (if using
include2 mode).

– List administrative informations are stored in the admin table table if using include2
mode, along with owner and editor options. This table also contains the cache for
included owners and editors.

8.1 Prerequisites

You need to have a DataBase System installed (not necessarily on the same host as
Sympa), and the client libraries for that Database installed on the Sympa host ; provided,
of course, that a PERL DBD (DataBase Driver) is available for your chosen RDBMS !
Check the DBI Module Availability2.

1http ://www.symbolstone.org/technology/perl/DBI/
2http ://www.symbolstone.org/technology/perl/DBI/

79

http://www.symbolstone.org/technology/perl/DBI/
http://www.symbolstone.org/technology/perl/DBI/

80 CHAPITRE 8. SYMPA AND ITS DATABASE

8.2 Installing PERL modules

Sympa will use DBI to communicate with the database system and therefore requires
the DBD for your database system. DBI and DBD : :YourDB (Msql-Mysql-modules
for MySQL) are distributed as CPAN modules. Refer to 3.2.3, page 29 for installation
details of these modules.

8.3 Creating a sympa DataBase

8.3.1 Database structure

The sympa database structure is slightly different from the structure of a subscribers
file. A subscribers file is a text file based on paragraphs (similar to the config file) ;
each paragraph completely describes a subscriber. If somebody is subscribed to two
lists, he/she will appear in both subscribers files.

The DataBase distinguishes information relative to a person (e-mail, real name, pass-
word) and his/her subscription options (list concerned, date of subscription, reception
option, visibility option). This results in a separation of the data into two tables : the
user table and the subscriber table, linked by a user/subscriber e-mail.

The table concerning owners and editors, the admin table, is made on the same way as
the subscriber table but is used only in include2 mode. It constains owner and editor
options (list concerned, administrative role, date of “subscription”, reception option,
private info, gecos and profile option for owners).

8.3.2 Database creation

The create db script below will create the sympa database for you. You can find it in
the script/ directory of the distribution (currently scripts are available for MySQL,
SQLite, PostgreSQL, Oracle and Sybase).

– MySQL database creation script

MySQL Database creation script

CREATE DATABASE sympa;

Connect to DB
\r sympa

CREATE TABLE user_table (

8.3. CREATING A SYMPA DATABASE 81

email_user varchar (100) NOT NULL,
gecos_user varchar (150),
password_user varchar (40),

cookie_delay_user int,
lang_user varchar (10),
attributes_user varchar(255),
PRIMARY KEY (email_user)
);

CREATE TABLE subscriber_table (
list_subscriber varchar (50) NOT NULL,

user_subscriber varchar (100) NOT NULL,
robot_subscriber varchar (80) NOT NULL,
date_subscriber datetime NOT NULL,
update_subscriber datetime,
visibility_subscriber varchar (20),
reception_subscriber varchar (20),
topics_subscriber varchar (200),
bounce_subscriber varchar (35),
bounce_score_subscriber smallint (6),
bounce_address_subscriber varchar (100),
comment_subscriber varchar (150),
subscribed_subscriber int(1),
included_subscriber int(1),
include_sources_subscriber varchar(50),
PRIMARY KEY (list_subscriber, user_subscriber, robot_subscriber),
INDEX (user_subscriber,list_subscriber,robot_subscriber)
);

CREATE TABLE admin_table (
list_admin varchar(50) NOT NULL,
user_admin varchar(100) NOT NULL,
robot_admin varchar(80) NOT NULL,

role_admin enum(’listmaster’,’owner’,’editor’) NOT NULL,
date_admin datetime NOT NULL,
update_admin datetime,
reception_admin varchar(20),
comment_admin varchar(150),
subscribed_admin int(1),
included_admin int(1),
include_sources_admin varchar(50),
info_admin varchar(150),
profile_admin enum(’privileged’,’normal’),
PRIMARY KEY (list_admin, user_admin, robot_admin, role_admin),
INDEX (list_admin, user_admin,robot_admin,role_admin)
);

CREATE TABLE netidmap_table (
netid_netidmap varchar (100) NOT NULL,

serviceid_netidmap varchar (100) NOT NULL,

82 CHAPITRE 8. SYMPA AND ITS DATABASE

robot_netidmap varchar (80) NOT NULL,
email_netidmap varchar (100),
PRIMARY KEY (netid_netidmap, serviceid_netidmap, robot_netidmap)

);

CREATE TABLE logs_table (
id_logs bigint(20) NOT NULL,
date_logs int(11) NOT NULL,
robot_logs varchar(80),
list_logs varchar(50),
action_logs varchar(50) NOT NULL,
parameters_logs varchar(100),
target_email_logs varchar(100),
user_email_logs varchar(100),
msg_id_logs varchar(255),
status_logs varchar(10) NOT NULL,
error_type_logs varchar(150),
client_logs varchar(100),
daemon_logs varchar(10) NOT NULL,
PRIMARY KEY (id_logs)
);

– SQLiteL database creation script

CREATE TABLE user_table (
email_user varchar (100) NOT NULL,
gecos_user varchar (150),
password_user varchar (40),

cookie_delay_user integer,
lang_user varchar (10),
attributes_user varchar(255),
PRIMARY KEY (email_user)
);

CREATE TABLE subscriber_table (
list_subscriber varchar (50) NOT NULL,

user_subscriber varchar (100) NOT NULL,
robot_subscriber varchar (80) NOT NULL,
date_subscriber timestamp NOT NULL,
update_subscriber timestamp,
visibility_subscriber varchar (20),
reception_subscriber varchar (20),
topics_subscriber varchar (200),
bounce_subscriber varchar (35),
bounce_address_subscriber varchar (100),
comment_subscriber varchar (150),
subscribed_subscriber boolean,
included_subscriber boolean,

8.3. CREATING A SYMPA DATABASE 83

include_sources_subscriber varchar(50),
bounce_score_subscriber integer,
PRIMARY KEY (list_subscriber, user_subscriber, robot_subscriber)
);
CREATE INDEX subscriber_idx ON subscriber_table (user_subscriber,list_subscriber,robot_subscriber);

CREATE TABLE admin_table (
list_admin varchar(50) NOT NULL,
user_admin varchar(100) NOT NULL,
robot_admin varchar(80) NOT NULL,

role_admin varchar(15) NOT NULL,
date_admin timestamp NOT NULL,
update_admin timestamp,
reception_admin varchar(20),
comment_admin varchar(150),
subscribed_admin boolean,
included_admin boolean,
include_sources_admin varchar(50),
info_admin varchar(150),
profile_admin varchar(15),
PRIMARY KEY (list_admin, user_admin, robot_admin, role_admin)
);
CREATE INDEX admin_idx ON admin_table(list_admin, user_admin, robot_admin, role_admin);

CREATE TABLE netidmap_table (
netid_netidmap varchar (100) NOT NULL,

serviceid_netidmap varchar (100) NOT NULL,
robot_netidmap varchar (80) NOT NULL,

email_netidmap varchar (100),
PRIMARY KEY (netid_netidmap, serviceid_netidmap, robot_netidmap)

);
CREATE INDEX netidmap_idx ON netidmap_table(netid_netidmap, serviceid_netidmap, robot_netidmap);

CREATE TABLE logs_table (
id_logs integer NOT NULL,
date_logs integer NOT NULL,
robot_logs varchar(80),
list_logs varchar(50),
action_logs varchar(50) NOT NULL,
parameters_logs varchar(100),
target_email_logs varchar(100),
user_email_logs varchar(100),
msg_id_logs varchar(255),
status_logs varchar(10) NOT NULL,
error_type_logs varchar(150),
client_logs varchar(100),
daemon_logs varchar(10) NOT NULL,
PRIMARY KEY (id_logs)
);
CREATE INDEX logs_idx ON logs_table(id_logs);

84 CHAPITRE 8. SYMPA AND ITS DATABASE

– PostgreSQL database creation script

-- PostgreSQL Database creation script

CREATE DATABASE sympa;

-- Connect to DB
\connect sympa

DROP TABLE user_table;
CREATE TABLE user_table (

email_user varchar (100) NOT NULL,
gecos_user varchar (150),

cookie_delay_user int4,
password_user varchar (40),
lang_user varchar (10),

attributes_user varchar (255),
CONSTRAINT ind_user PRIMARY KEY (email_user)
);

DROP TABLE subscriber_table;
CREATE TABLE subscriber_table (

list_subscriber varchar (50) NOT NULL,
user_subscriber varchar (100) NOT NULL,
robot_subscriber varchar (80) NOT NULL,
date_subscriber timestamp with time zone NOT NULL,
update_subscriber timestamp with time zone,
visibility_subscriber varchar (20),
reception_subscriber varchar (20),
topics_subscriber varchar (200),
bounce_subscriber varchar (35),
bounce_score_subscriber int4,
bounce_address_subscriber varchar (100),
comment_subscriber varchar (150),
subscribed_subscriber smallint,
included_subscriber smallint,
include_sources_subscriber varchar(50),
CONSTRAINT ind_subscriber PRIMARY KEY (list_subscriber, user_subscriber, robot_subscriber)
);
CREATE INDEX subscriber_idx ON subscriber_table (user_subscriber,list_subscriber,robot_subscriber);

DROP TABLE admin_table;
CREATE TABLE admin_table (
list_admin varchar(50) NOT NULL,
user_admin varchar(100) NOT NULL,
robot_admin varchar(80) NOT NULL,

role_admin varchar(15) NOT NULL,
date_admin timestamp with time zone NOT NULL,
update_admin timestamp with time zone,

8.3. CREATING A SYMPA DATABASE 85

reception_admin varchar(20),
comment_admin varchar(150),
subscribed_admin smallint,
included_admin smallint,
include_sources_admin varchar(50),
info_admin varchar(150),
profile_admin varchar(15),

CONSTRAINT ind_admin PRIMARY KEY (list_admin, user_admin, robot_admin, role_admin)
);
CREATE INDEX admin_idx ON admin_table(list_admin, user_admin,robot_admin, role_admin);

DROP TABLE netidmap_table;
CREATE TABLE netidmap_table (

netid_netidmap varchar (100) NOT NULL,
serviceid_netidmap varchar (100) NOT NULL,
robot_netidmap varchar (80) NOT NULL,

email_netidmap varchar (100),
CONSTRAINT ind_netidmap PRIMARY KEY (netid_netidmap, serviceid_netidmap, robot_netidmap)

);
CREATE INDEX netidmap_idx ON netidmap_table(netid_netidmap, serviceid_netidmap, robot_netidmap);

DROP TABLE logs_table;
CREATE TABLE logs_table (
id_logs bigint NOT NULL,
date_logs int4 NOT NULL,
robot_logs varchar (80),
list_logs varchar (50),
action_logs varchar (50) NOT NULL,
parameters_logs varchar (100),
target_email_logs varchar (100),
user_email_logs varchar (100),
msg_id_logs varchar (255),
status_logs varchar (10) NOT NULL,
error_type_logs varchar (150),
client_logs varchar (100),
daemon_logs varchar (10) NOT NULL,

CONSTRAINT ind_logs PRIMARY KEY (id_logs)
);
CREATE INDEX logs_idx ON logs_table(id_logs);

– Sybase database creation script

/* Sybase Database creation script 2.5.2 */
/* Thierry Charles <tcharles@electron-libre.com> */
/* 15/06/01 : extend password_user */

/* sympa database must have been created */
/* eg: create database sympa on your_device_data=10 log on your_device_log=4 */
use sympa
go

86 CHAPITRE 8. SYMPA AND ITS DATABASE

create table user_table
(

email_user varchar(100) not null,
gecos_user varchar(150) null ,
password_user varchar(40) null ,
cookie_delay_user numeric null ,
lang_user varchar(10) null ,
attributes_user varchar(255) null ,
constraint ind_user primary key (email_user)

)
go

create index email_user_fk on user_table (email_user)
go

create table subscriber_table
(

list_subscriber varchar(50) not null,
user_subscriber varchar(100) not null,
robot_subscriber varchar(80) not null,
date_subscriber datetime not null,
update_subscriber datetime null,
visibility_subscriber varchar(20) null ,
reception_subscriber varchar(20) null ,
topics_subscriber varchar(200) null,
bounce_subscriber varchar(35) null ,
bounce_score_subscriber numeric null ,
comment_subscriber varchar(150) null ,
subscribed_subscriber numeric null ,
included_subscriber numeric null ,
include_sources_subscriber varchar(50) null ,
constraint ind_subscriber primary key (list_subscriber, user_subscriber, robot_subscriber)

)
go

create index list_subscriber_fk on subscriber_table (list_subscriber)
go

create index user_subscriber_fk on subscriber_table (user_subscriber)
go

create index robot_subscriber_fk on subscriber_table (robot_subscriber)
go

create table admin_table
(
list_admin varchar(50) not null,
user_admin varchar(100) not null,

8.3. CREATING A SYMPA DATABASE 87

robot_admin varchar(80) not null,
role_admin varchar(15) not null,
date_admin datetime not null,
update_admin datetime null,
reception_admin varchar(20) null,
comment_admin varchar(150) null,
subscribed_admin numeric null,
included_admin numeric null,
include_sources_admin varchar(50) null,
info_admin varchar(150) null,
profile_admin varchar(15) null,

constraint ind_admin primary key (list_admin, user_admin,robot_admin,role_admin)
)
go

create index list_admin_fk on admin_table (list_admin)
go

create index user_admin_fk on admin_table (user_admin)
go

create index robot_admin_fk on admin_table (robot_admin)
go

create index role_admin_fk on admin_table (role_admin)
go

create table netidmap_table
(

netid_netidmap varchar (100) NOT NULL,
serviceid_netidmap varchar (100) NOT NULL,
robot_netidmap varchar (80) NOT NULL,

email_netidmap varchar (100),
constraint ind_netidmap primary key (netid_netidmap, serviceid_netidmap, robot_netidmap)

)
go

create index netid_netidmap_fk on netidmap_table (netid_netidmap)
go

create index serviceid_netidmap_fk on netidmap_table (serviceid_netidmap)
go

create index robot_netidmap_fk on netidmap_table (robot_netidmap)
go

CREATE TABLE logs_table (
id_logs numeric NOT NULL,
date_logs numeric NOT NULL,
robot_logs varchar(80),

88 CHAPITRE 8. SYMPA AND ITS DATABASE

list_logs varchar(50),
action_logs varchar(50) NOT NULL,
parameters_logs varchar(100),
target_email_logs varchar(100),
user_email_logs varchar(100),
msg_id_logs varchar(255),
status_logs varchar(10) NOT NULL,
error_type_logs varchar(150),
client_logs varchar(100),
daemon_logs varchar(10) NOT NULL,
constraint ind_logs primary key (id_logs)
)
go

create index id_logs_fk on logs_table (id_logs)
go

– Oracle database creation script

Oracle Database creation script
Fabien Marquois <fmarquoi@univ-lr.fr>

/Bases/oracle/product/7.3.4.1/bin/sqlplus loginsystem/passwdoracle <<-!
create user SYMPA identified by SYMPA default tablespace TABLESP
temporary tablespace TEMP;
grant create session to SYMPA;
grant create table to SYMPA;
grant create synonym to SYMPA;
grant create view to SYMPA;
grant execute any procedure to SYMPA;
grant select any table to SYMPA;
grant select any sequence to SYMPA;
grant resource to SYMPA;
!

/Bases/oracle/product/7.3.4.1/bin/sqlplus SYMPA/SYMPA <<-!
CREATE TABLE user_table (

email_user varchar2(100) NOT NULL,
gecos_user varchar2(150),
password_user varchar2(40),
cookie_delay_user number,
lang_user varchar2(10),

attributes_user varchar2(500),
CONSTRAINT ind_user PRIMARY KEY (email_user)

);
CREATE TABLE subscriber_table (

list_subscriber varchar2(50) NOT NULL,
user_subscriber varchar2(100) NOT NULL,
robot_subscriber varchar2(80) NOT NULL,
date_subscriber date NOT NULL,

8.3. CREATING A SYMPA DATABASE 89

update_subscriber date,
visibility_subscriber varchar2(20),
reception_subscriber varchar2(20),

topics_subscriber varchar2(200),
bounce_subscriber varchar2 (35),

bounce_score_subscriber number,
bounce_address_subscriber varchar2 (100),
comment_subscriber varchar2 (150),

subscribed_subscriber number NULL constraint cons_subscribed_subscriber CHECK (subscribed_subscriber in (0,1)),
included_subscriber number NULL constraint cons_included_subscriber CHECK (included_subscriber in (0,1)),
include_sources_subscriber varchar2(50),

CONSTRAINT ind_subscriber PRIMARY KEY (list_subscriber,user_subscriber,robot_subscriber)
);
CREATE TABLE admin_table (
list_admin varchar2(50) NOT NULL,
user_admin varchar2(100) NOT NULL,
robot_admin varchar2(80) NOT NULL,

role_admin varchar2(20) NOT NULL,
date_admin date NOT NULL,
update_admin date,
reception_admin varchar2(20),
comment_admin varchar2(150),
subscribed_admin number NULL constraint cons_subscribed_admin CHECK (subscribed_admin in (0,1)),
included_admin number NULL constraint cons_included_admin CHECK (included_admin in (0,1)),
include_sources_admin varchar2(50),
info_admin varchar2(150),
profile_admin varchar2(20),

CONSTRAINT ind_admin PRIMARY KEY (list_admin,user_admin,robot_admin,role_admin)
);

CREATE TABLE netidmap_table (
netid_netidmap varchar2 (100) NOT NULL,

serviceid_netidmap varchar2 (100) NOT NULL,
robot_netidmap varchar2 (80) NOT NULL,

email_netidmap varchar2 (100),
CONSTRAINT ind_netidmap PRIMARY KEY (netid_netidmap, serviceid_netidmap, robot_netidmap)

);

CREATE TABLE logs_table (
id_logs number NOT NULL,
date_logs number NOT NULL,
robot_logs varchar2 (80),
list_logs varchar2 (50),
action_logs varchar2 (50) NOT NULL,
parameters_logs varchar2 (100),
target_email_logs varchar2 (100),
user_email_logs varchar2 (100),
msg_id_logs varchar2 (255),
status_logs varchar2 (10) NOT NULL,
error_type_logs varchar2 (150),

90 CHAPITRE 8. SYMPA AND ITS DATABASE

client_logs varchar2 (100),
daemon_logs varchar2 (10) NOT NULL,
CONSTRAINT ind_admin PRIMARY KEY (id_logs)
);

!

You can execute the script using a simple SQL shell such as mysql, psql or sqlplus.

Example :

mysql < create_db.mysql

8.4 Setting database privileges

We strongly recommend you restrict access to sympa database. You will then set
db user and db passwd in sympa.conf.

With MySQL :
grant all on sympa.* to sympa@localhost identified by ’your_password’;
flush privileges;

8.5 Importing subscribers data

8.5.1 Importing data from a text file

You can import subscribers data into the database from a text file having one entry per
line : the first field is an e-mail address, the second (optional) field is the free form
name. Fields are spaces-separated.

Example :
Data to be imported
email gecos
john.steward@some.company.com John - accountant
mary.blacksmith@another.company.com Mary - secretary

To import data into the database :

cat /tmp/my_import_file | sympa.pl --import=my_list

(see 4.1, page 35).

8.6. MANAGEMENT OF THE INCLUDE CACHE 91

8.5.2 Importing data from subscribers files

If a mailing list was previously setup to store subscribers into subscribers file (the
default mode in versions older then 2.2b) you can load subscribers data into the sympa
database. The easiest way is to edit the list configuration using WWSympa (this requires
listmaster privileges) and change the data source from file to database ; subscribers
data will be loaded into the database at the same time.

If the subscribers file is big, a timeout may occur during the FastCGI execution
(Note that you can set a longer timeout with the -idle-timeout option of the
FastCgiServer Apache configuration directive). In this case, or if you have not ins-
talled WWSympa, you should use the load subscribers.pl script.

8.6 Management of the include cache

You may dynamically add a list of subscribers, editors or owners to a list with Sympa’s
include2 user data source. Sympa is able to query multiple data sources (RDBMS,
LDAP directory, flat file, a local list, a remote list) to build a mailing list.

Sympa used to manage the cache of such included subscribers in a DB File (include
mode) but now stores subscribers, editors and owners in the database (include2 mode).
These changes brought the following advantages :
– Sympa processes are smaller when dealing with big mailing lists (in include mode)
– Cache update is now performed regularly by a dedicated process, the task manager
– Mixed lists (included + subscribed users) can now be created
– Sympa can now provide reception options for included members
– Bounces information can be managed for included members
– Sympa keeps track of the data sources of a member (available on the web REVIEW

page)
– included members can also subscribe to the list. It allows them to remain in the list

though they might no more be included.

8.7 Extending database table format

You can easily add other fields to the three tables, they will not disturb Sympa because
it lists explicitely the field it expects in SELECT queries.

Moreover you can access these database fields from within Sympa (in templates), as far
as you list these additional fields in sympa.conf (See 7.10.11, page 74 and 7.10.12,
page 74).

92 CHAPITRE 8. SYMPA AND ITS DATABASE

8.8 Sympa configuration

To store subscriber information in your newly created database, you first need to tell
Sympa what kind of database to work with, then you must configure your list to access
the database.

You define the database source in sympa.conf : db type, db name, db host,
db user, db passwd.

If you are interfacing Sympa with an Oracle database, db name is the SID.

All your lists are now configured to use the database, unless you set list parameter
user data source to file or include.

Sympa will now extract and store user information for this list using the database ins-
tead of the subscribers file. Note however that subscriber information is dumped
to subscribers.db.dump at every shutdown, to allow a manual rescue restart (by
renaming subscribers.db.dump to subscribers and changing the user data source para-
meter), if ever the database were to become inaccessible.

Chapitre 9

WWSympa, Sympa’s web
interface

WWSympa is Sympa’s web interface.

9.1 Organization

WWSympa is fully integrated with Sympa. It uses sympa.conf and Sympa’s libraries.
The default Sympa installation will also install WWSympa.

Every single piece of HTML in WWSympa is generated by the CGI code using template
files (See 17.1, page 159). This facilitates internationalization of pages, as well as per-
site customization.

The code consists of one single PERL CGI script, WWSympa.fcgi. To enhance per-
formance you can configure WWSympa to use FastCGI ; the CGI will be persistent in
memory.
All data will be accessed through the CGI, including web archives. This is required to
allow the authentication scheme to be applied systematically.

Authentication is based on passwords stored in the database table user table ; if the
appropriate Crypt : :CipherSaber is installed, password are encrypted in the da-
tabase using reversible encryption based on RC4. Otherwise they are stored in clear
text. In both cases reminding of passwords is possible. To keep track of authentication
information WWSympa uses HTTP cookies stored on the client side. The HTTP cookie
only indicates that a specified e-mail address has been authenticated ; permissions are
evaluated when an action is requested.

93

94 CHAPITRE 9. WWSYMPA, SYMPA’S WEB INTERFACE

The same web interface is used by the listmaster, list owners, subscribers and others.
Depending on permissions, the same URL may generate a different view.

WWSympa’s main loop algorithm is roughly the following :

1. Check authentication information returned by the HTTP cookie

2. Evaluate user’s permissions for the requested action

3. Process the requested action

4. Set up variables resulting from the action

5. Parse the HTML template files

9.2 Web server setup

9.2.1 wwsympa.fcgi access permissions

Because Sympa and WWSympa share a lot of files, wwsympa.fcgi, must run with the
same uid/gid as archived.pl, bounced.pl and sympa.pl. There are different ways
to achieve this :
– SetuidPerl : this is the default method but might be insecure. If you don’t set the

- -enable secure configure option, wwsympa.fcgi is installed with the SetUID bit
set. On most systems you will need to install the suidperl package.

– Sudo : use sudo to run wwsympa.fcgi as user sympa. Your Apache configuration
should use wwsympa sudo wrapper.pl instead of wwsympa.fcgi. You should edit
your /etc/sudoers file (with visudo command) as follows :

apache ALL = (sympa) NOPASSWD: /usr/local/sympa-os/bin/wwsympa.fcgi

– Dedicated Apache server : run a dedicated Apache server with sympa.sympa as
uid.gid (The Apache default is apache.apache).

– Apache suExec : use an Apache virtual host with sympa.sympa as uid.gid ; Apache
needs to be compiled with suexec. Be aware that the Apache suexec usually define a
lowest UID/GID allowed to be a target user for suEXEC. For most systems including
binaries distribution of Apache, the default value 100 is common. So Sympa UID
(and Sympa GID) must be higher then 100 or suexec must be tuned in order to allow
lower UID/GID. Check http ://httpd.apache.org/docs/suexec.html#install for details
The User and Group directive have to be set before the FastCgiServer directive is
encountered.

– C wrapper : otherwise, you can overcome restrictions on the execution of suid scripts
by using a short C program, owned by sympa and with the suid bit set, to start
wwsympa.fcgi. Here is an example (with no guarantee attached) :

#include <unistd.h>

#define WWSYMPA "/usr/local/sympa-os/bin/wwsympa.fcgi"

int main(int argn, char **argv, char **envp) {

9.2. WEB SERVER SETUP 95

argv[0] = WWSYMPA;
execve(WWSYMPA,argv,envp);

}

9.2.2 Installing wwsympa.fcgi in your Apache server

You first need to set an alias to the directory where Sympa stores static contents (CSS,
members pictures, documentation) directly delivered by Apache

Example :
Alias /static-sympa /usr/local/sympa-os/static_content

If you chose to run wwsympa.fcgi as a simple CGI, you simply need to script alias it.

Example :
ScriptAlias /sympa /usr/local/sympa-os/bin/wwsympa.fcgi

Running FastCGI will provide much faster responses from your server and reduce load
(to understand why, read http ://www.fastcgi.com/fcgi-devkit-2.1/doc/fcgi-perf.htm)

Example :
FastCgiServer /usr/local/sympa-os/bin/wwsympa.fcgi -processes 2
<Location /sympa>

SetHandler fastcgi-script
</Location>

ScriptAlias /sympa /usr/local/sympa-os/bin/wwsympa.fcgi

If you are using sudo (see evious subsection), then replace wwsympa.fcgi calls with
wwsympa sudo wrapper.pl.

If you run virtual hosts, then each FastCgiServer(s) can serve multiple hosts. Therefore
you need to define it in the common section of your Apache configuration file.

9.2.3 Using FastCGI

FastCGI is an extention to CGI that provides persistency for CGI programs. It is ex-
temely useful with WWSympa since source code interpretation and all initialisation

http://www.fastcgi.com/fcgi-devkit-2.1/doc/fcgi-perf.htm
http://www.fastcgi.com/

96 CHAPITRE 9. WWSYMPA, SYMPA’S WEB INTERFACE

tasks are performed only once, at server startup ; then file wwsympa.fcgi instances are
waiting for clients requests.

WWSympa can also work without FastCGI, depending on the use fast cgi parameter
(see 9.3.15, page 99).

To run WWSympa with FastCGI, you need to install :
– mod fastcgi : the Apache module that provides FastCGI features
– FCGI : the Perl module used by WWSympa

9.3 wwsympa.conf parameters

9.3.1 arc path

(Default value: /home/httpd/html/arc)
Where to store html archives. This parameter is used by the archived.pl daemon. It
is a good idea to install the archive outside the web hierarchy to prevent possible back
doors in the access control powered by WWSympa. However, if Apache is configured
with a chroot, you may have to install the archive in the Apache directory tree.

9.3.2 archive default index thrd — mail

(Default value: thrd)
The default index organization when entering web archives : either threaded or chro-
nological order.

9.3.3 archived pidfile

(Default value: archived.pid)
The file containing the PID of archived.pl.

9.3.4 bounce path

(Default value: /var/bounce)
Root directory for storing bounces (non-delivery reports). This parameter is used
mainly by the bounced.pl daemon.

9.3. WWSYMPA.CONF PARAMETERS 97

9.3.5 bounced pidfile

(Default value: bounced.pid)
The file containing the PID of bounced.pl.

9.3.6 cookie expire

(Default value: 0) Lifetime (in minutes) of HTTP cookies. This is the default value
when not set explicitly by users.

9.3.7 cookie domain

(Default value: localhost)
Domain for the HTTP cookies. If beginning with a dot (’.’), the cookie is available
within the specified internet domain. Otherwise, for the specified host. Example :

cookie_domain cru.fr
cookie is available for host ’cru.fr’

cookie_domain .cru.fr
cookie is available for any host within ’cru.fr’ domain

The only reason for replacing the default value would be where WWSympa’s authenti-
cation process is shared with an application running on another host.

9.3.8 default home

(Default value: home)
Organization of the WWSympa home page. If you have only a few lists, the default
value ‘home’ (presenting a list of lists organized by topic) should be replaced by ‘lists’
(a simple alphabetical list of lists).

9.3.9 icons url

(Default value: /icons)
URL of WWSympa’s icons directory.

98 CHAPITRE 9. WWSYMPA, SYMPA’S WEB INTERFACE

9.3.10 log facility

WWSympa will log using this facility. Defaults to Sympa’s syslog facility. Configure
your syslog according to this parameter.

9.3.11 mhonarc

(Default value: /usr/bin/mhonarc)
Path to the (superb) MhOnArc program. Required for html archives
http ://www.oac.uci.edu/indiv/ehood/mhonarc.html

9.3.12 htmlarea url

(Default value: undefined)
Relative URL to the (superb) online html editor HTMLarea. If you have installed ja-
vascript application you can use it when editing html document in the shared document
repository. In order to activate this pluggin the value of this parameter should point
to the root directory where HTMLarea is installed. HTMLarea is a free opensource
software you can download here : http ://sf.net/projects/itools-htmlarea/

9.3.13 password case sensitive — insensitive

(Default value: insensitive)
If set to insensitive, WWSympa’s password check will be insensitive. This only
concerns passwords stored in Sympa database, not the ones in LDAP.

Be careful : in previous 3.xx versions of Sympa, passwords were lowercased before da-
tabase insertion. Therefore changing to case-sensitive password checking could bring
you some password checking problems.

9.3.14 title

(Default value: Mailing List Service)
The name of your mailing list service. It will appear in the Title section of WWSympa.

9.4. MHONARC 99

9.3.15 use fast cgi 0 — 1

(Default value: 1)
Choice of whether or not to use FastCGI. On listes.cru.fr, using FastCGI increases WW-
Sympa performance by as much as a factor of 10. Refer to http ://www.fastcgi.com/ and
the Apache config section of this document for details about FastCGI.

9.4 MhOnArc

MhOnArc is a neat little converter from mime messages to html. Refer to
http ://www.oac.uci.edu/indiv/ehood/mhonarc.html.

The long mhonarc resource file is used by WWSympa in a particular way. MhOnArc is
called to produce not a complete html document, but only a part of it to be included in a
complete document (starting with <HTML> and terminating with </HTML> ;-)). The
best way is to use the MhOnArc resource file provided in the WWSympa distribution
and to modify it for your needs.

The mhonarc resource file is named mhonarc-ressources. You may locate this file
either in

1. /usr/local/sympa-os/expl/mylist/mhonarc-ressources in order to
create a specific archive look for a particular list

2. or /usr/local/sympa-os/etc/mhonarc-ressources

9.5 Archiving daemon

archived.pl converts messages from Sympa’s spools and calls mhonarc to create
html versions (whose location is defined by the ”arc path” WWSympa parameter).
You should probably install these archives outside the Sympa home dir (Sympa’s initial
choice for storing mail archives : /usr/local/sympa-os/expl/mylist). Note that
the html archive contains a text version of each message and is totally separate from
Sympa’s main archive.

1. create a directory according to the WWSympa ”arc path” parameter (must be
owned by sympa, does not have to be in Apache space unless your server uses
chroot)

2. for each list, if you need a web archive, create a new web archive paragraph in
the list configuration. Example :

web_archive
access public|private|owner|listmaster|closed
quota 10000

http://www.fastcgi.com/
http://www.oac.uci.edu/indiv/ehood/mhonarc.html

100 CHAPITRE 9. WWSYMPA, SYMPA’S WEB INTERFACE

If web archive is defined for a list, every message distributed by this list is copied
to /usr/local/sympa-os/spool/outgoing/. (No need to create nonexistent
subscribers to receive copies of messages). In this example disk quota (expressed
in Kbytes) for the archive is limited to 10 Mo.

3. start archived.pl. Sympa and Apache

4. check WWSympa logs, or alternatively, start archived.pl in debug mode (-d).

5. If you change mhonarc resources and wish to rebuild the entire archive
using the new look defined for mhonarc, simply create an empty file named
”.rebuild.mylist@myhost” in /usr/local/sympa-os/spool/outgoing, and
make sure that the owner of this file is Sympa.

example : su sympa -c "touch /usr/local/sympa-os/spool/outgoing/.rebuild.sympa-fr@cru.fr"

You can also rebuild web archives from within the admin page of the list.
Furthermore, if you want to get list’s archives, you can do it via the
List-admin menu-> Archive Management

9.6 Database configuration

WWSympa needs an RDBMS (Relational Database Management System) in order to
run. All database access is performed via the Sympa API. Sympa currently interfaces
with MySQL, SQLite, PostgreSQL, Oracle and Sybase.

A database is needed to store user passwords and preferences. The database structure
is documented in the Sympa documentation ; scripts for creating it are also provided
with the Sympa distribution (in script).

User information (password and preferences) are stored in the “User” table. User pass-
words stored in the database are encrypted using reversible RC4 encryption controlled
with the cookie parameter, since WWSympa might need to remind users of their pass-
words. The security of WWSympa rests on the security of your database.

9.7 Logging in as listmaster

Once Sympa is running you should log in on the web interface as a privileged user
(listmaster) to explore the admin interface, create mailing lists.

Multiple email addresses can be declared as listmaster via the sympa.conf (or
robot.conf) listmaster configuration parameter (see 7, page 49). Note that list-
masters on the main robot (declared in sympa.conf) also have listmaster privileges on
the virtual hosts but they will not receive the various mail notifications (list creation,
warnings,...) regarding these virtual hosts.

http://www.mysql.net/
http://sqlite.org/
http://www.postgresql.pyrenet.fr/
http://www.oracle.com/database/
http://www.sybase.com/index_sybase.html

9.7. LOGGING IN AS LISTMASTER 101

The listmasters should log in with their canonical email address as an identifier (not
listmaster@my.host). The associated password is not declared in sympa.conf ; it will
be allocated by Sympa when first hitting the Send me a password button on the web
interface. As for any user, the password can then be modified via the Preferenced
menu.

Note that you must start the sympa.pl process with the web interface ; it is in respon-
sible for delivering mail messages including password reminders.

102 CHAPITRE 9. WWSYMPA, SYMPA’S WEB INTERFACE

Chapitre 10

Sympa Internationalization

10.1 Catalogs and templates

Sympa is designed to allow easy internationalization of its user interface (service mail
messages and web interface). All translations for one language are gathered in a single
PO file that can be manipulated by standard GNU gettext tools1.

Documentation and ressources about software translations : http ://trans-
late.sourceforge.net/doc/2

Sympa previously (until Sympa 4.1.x) used XPG4 messages catalogue format. Web and
mail templates were language specific. The new organization both provide a unique file
to work on for translators and a standard format supported by many software. Sympa
templates refer to translatable strings using the loc TT2 filter.

Examples :

[%|loc%]User Email[%END%]

[%|loc(list.name,user.email)%]You have subscribed to list %1 with email address %2[%END%]

Sympa had previously been translated into 15 languages more or less completely. We
have automatically extracted the translatable strings from previous templates but this
process is awkward and is only seen as a bootstrap for translators. Therefore Sympa
distribution will not include previous translations until a skilled translator has reviewed
and updated the corresponding PO file.

1http ://www.gnu.org/software/gettext/#TOCintroduction
2http ://translate.sourceforge.net/doc/

103

http://www.gnu.org/software/gettext/#TOCintroduction
http://translate.sourceforge.net/doc/
http://translate.sourceforge.net/doc/

104 CHAPITRE 10. SYMPA INTERNATIONALIZATION

10.2 Translating Sympa GUI in your language

Instructions for translating Sympa are maintained on Sympa web site :
http ://www.sympa.org/howtotranslate.html

10.3 Defining language-specific templates

The default Sympa templates are language independant, refering to catalogue entries
for translations. When customizing either web or mail templates, you can define dif-
ferent templates for different languages. The template should be located in a ll CC
subdirectory of web tt2 or mail tt2 with the language code.

Example :

/web_tt2/home.tt2
/web_tt2/de_DE/home.tt2
/web_tt2/fr_FR/home.tt2

This mecanism also applies to comment.tt2 files used by create list templates.

Web templates can also make use of the locale variable to make templates multi-
lingual :

Example :

[% IF locale == ’fr_FR’ %]
Personnalisation
[% ELSE %]
Customization
[% END %]

10.4 Translating topics titles

Topics are defined in a topics.conf file. In this file, each entry can be given a title in
different languages, see 17.5, page 163.

10.5 Handling of encodings

Until version 5.3, Sympa web pages were encoded in each language’s encoding (iso-
8859-1 for French, utf-8 for Japanese,...) whereas every web page is now encoded in

http://www.sympa.org/howtotranslate.html

10.5. HANDLING OF ENCODINGS 105

utf-8. Thanks to the Encode Perl module, Sympa can now juggle with the filesystem
encoding, each message catalog’s encoding and its web encoding (utf-8).

If your operating system uses a character encoding different from utf-8, then you should
declare it using the filesystem encoding sympa.conf parameter (see ??, page ??).
It is required to do so because Sympa has no way to find out what encoding is used for
its configuration files. Once this encoding is known, every template or configuration
parameter can be read properly for the web and also saved properly when edited from
the web interface.

Note that the shared documents (see23, page 233) filenames are Q-encoded to make
their storage encoding neutral. This encoding is transparent for the end-users.

106 CHAPITRE 10. SYMPA INTERNATIONALIZATION

Chapitre 11

Sympa RSS channel

This service is provided by WWSympa (Sympa’s web interface). Here is the root of
WWSympa’s rss channel :

(Default value: http ://<host>/wws/rss)
Example: https ://my.server/wws/rss

The access control of RSS queries proceed on the same way as WWSympa actions
referred to. Sympa provides the following RSS features :
– the latest created lists on a robot (latest lists) ;
– the most active lists on a robot(active lists) ;
– the latest messages of a list (active arc) ;
– the latest shared documents of a list (latest d read) ;

11.1 latest lists

This provides the latest created lists.

Example: http ://my.server/wws/rss/latest lists ?for=3&count=6
This provides the 6 latest created lists for the last 3 days.

Example: http ://my.server/wws/rss/latest lists/computing ?count=6
This provides the 6 latest created lists with topic “computing”.

Parameters :

107

108 CHAPITRE 11. SYMPA RSS CHANNEL

– for : period of interest (expressed in days). This is a CGI parameter. It is optional
but one of the two parameters “for” or “count” is required.

– count : maximum number of expected records. This is a CGI parameter. It is optio-
nal but one of the two parameters “for” or “count” is required.

– topic : the topic is indicated in the path info (see example below with topic compu-
ting). This parameter is optional.

11.2 active lists

This provides the most active lists, based on the number of distributed messages (num-
ber of received messages).

Example: http ://my.server/wws/rss/active lists ?for=3&count=6
This provides the 6 most active lists for the last 3 days.

Example: http ://my.server/wws/rss/active lists/computing ?count=6
This provides the 6 most active lists with topic “computing”.

Parameters :
– for : period of interest (expressed in days). This is a CGI parameter. It is optional

but one of the two parameters “for” or “count” is required.
– count : maximum number of expected records. This is a CGI parameter. It is optio-

nal but one of the two parameters “for” or “count” is required.
– topic : the topic is indicated in the path info (see example below with topic compu-

ting). This parameter is optional.

11.3 latest arc

This provides the latest messages of a list.

Example: http ://my.server/wws/rss/latest arc/mylist ?for=3&count=6
This provides the 6 latest messages received on the mylistlist for the last 3 days.

Parameters :
– list : the list is indicated in the path info. This parameter is mandatory.
– for : period of interest (expressed in days). This is a CGI parameter. It is optional

but one of the two parameters “for” or “count” is required.
– count : maximum number of expected records. This is a CGI parameter. It is optio-

nal but one of the two parameters “for” or “count” is required.

11.4. LATEST D READ 109

11.4 latest d read

This provides the latest updated and uploaded shared documents of a list.

Example: http ://my.server/wws/rss/latest d read/mylist ?for=3&count=6
This provides the 6 latest documents uploaded or updated on the mylistlist for the last
3 days.

Parameters :
– list : the list is indicated in the path info. This parameter is mandatory.
– for : period of interest (expressed in days). This is a CGI parameter. It is optional

but one of the two parameters “for” or “count” is required.
– count : maximum number of expected records. This is a CGI parameter. It is optio-

nal but one of the two parameters “for” or “count” is required.

110 CHAPITRE 11. SYMPA RSS CHANNEL

Chapitre 12

Sympa SOAP server

12.1 Introduction

SOAP is one protocol (generally over HTTP) that can be used to provide web services.
Sympa SOAP server allows to access a Sympa service from within another program,
written in any programming language and on any computer. SOAP encapsulates pro-
cedure calls, input parameters and resulting data in an XML data structure. The Sympa
SOAP server’s API is published in a WSDL document, retreived via Sympa’s web
interface.

The SOAP server provides a limited set of high level functions including login,
which, lists, subscribe, signoff and list creation. Other functions might be im-
plemented in the future. One of the important implementation constraint is to provide
services for proxy application with a correct authorization evaluation processus where
authentication may differ from classic web method. The following cases can be used
to access to the service :
– The client first ask for a login and later service request provide the sympa-user

cookie.
– The client authenticate the end user providing the sympa-user http cookie. This

can be used in order to share the an authenticated session betwing Sympa and some
other application running on the same server as wwsympa. The soap method used is
getUserEmailByCookieRequest.

– The client provide user email and password and request a service in a single soap
access using the authenticateAndRun soap service.

– The client is a trusted by Sympa as a proxy application and is authorized to set some
variables that will be used by Sympa during the authorization scenario evaluation.
Trusted application have there own password and the variables they can set are listed
in a configuration file name trusted applications.conf. See 12.4 page 112.

In any case scenario authorization is used with same rules as mail interface or usual
web interface.

111

http://www.w3.org/2002/ws/

112 CHAPITRE 12. SYMPA SOAP SERVER

The SOAP server uses SOAP : :Lite Perl library. The server is running as a daemon
(thanks to FastCGI), receiving the client SOAP requests via a web server (Apache for
example).

12.2 Web server setup

You NEED TO install FastCGI for the SOAP server to work properly because it will
run as a daemon.

Here is a sample piece of your Apache httpd.conf with a SOAP server configured :

FastCgiServer /usr/local/sympa-os/bin/sympa_soap_server.fcgi -processes 1
ScriptAlias /sympasoap /usr/local/sympa-os/bin/sympa_soap_server.fcgi

<Location /sympasoap>
SetHandler fastcgi-script

</Location>

12.3 Sympa setup

The only mandatory parameter you need to set in sympa.conf/robot.conf files is the
soap url that defines the URL of the SOAP service corresponding to the ScriptAlias
you’ve previously setup in Apache config.

This parameter is used to publish the SOAP service URL in the WSDL file (defining
the API) but also for the SOAP server to deduce what Virtual Host is concerned by the
current SOAP request (a single SOAP server will serve all Sympa virtual hosts).

12.4 trust remote application

The SOAP service authenticateRemoteAppAndRun is used in order to allow some
remote application such as a web portal to request Sympa service as a proxy for the
end user. In such case, Sympa will not authenticate the end user itself but instead it will
trust a particular application to act as a proxy.

This configuration file trusted applications.conf can be created in the ro-
bot etc/ subdirectory or in /usr/local/sympa-os/etc directory depending
on the scope you want for it (the source package include a sample of file
trusted applications.conf in directory soap). This file is constructed with pa-
ragraphs separated by empty line and stating with key word trusted application.

http://www.soaplite.com/

12.5. THE WSDL SERVICE DESCRIPTION 113

A sample trusted applications.conf file is provided with Sympa sources. Each
paragraph defines a remote trusted application with keyword/value pairs

– name : the name of the application. Used with password for authentication ; the
remote application name variable is set for use in authorization scenarios.

– md5password : the MD5 digest of the application password. You can compute the
digest as follows : sympa.pl -md5 digest=<the password>.

– proxy for variables : a comma separated list of variables that can be set by the
remote application and that will be used by Sympa SOAP server when evaluating
an authorization scenario. If you list USER EMAIL in this parameter, then the remote
application can act as a user. Any other variable such as remote host can be listed.

You can test your SOAP service using the sympa soap client.pl sample script as
follows :

/usr/local/sympa-os/bin/sympa_soap_client.pl --soap_url=http://my.server/sympasoap --service=createList --trusted_application=myTestApp --trusted_application_password=myTestAppPwd --proxy_vars="USER_EMAIL=userProxy@my.server" --service_parameters=listA,listSubject,discussion_list,description,myTopic

/usr/local/sympa-os/bin/sympa_soap_client.pl --soap_url=http://myserver/sympasoap --service=add --trusted_application=myTestApp --trusted_application_password=myTestAppPwd --proxy_vars="USER_EMAIL=userProxy@my.server" --service_parameters=listA,someone@some;domain,name

Availible services are :
– info ¡list¿
– which
– lists
– review ¡list¿
– amI ¡function¿
– subscribe ¡list¿
– signoff ¡list¿
– add ¡list¿¡email¿
– del ¡list¿¡email¿
– createList ¡list¿...
– closeList ¡list¿
– login ¡email¿¡password¿
– casLogin ¡proxyTicket¿
– checkCookie

12.5 The WSDL service description

Here is what the WSDL file looks like before it is parsed by WWSympa :

<?xml version="1.0"?>
<definitions name="Sympa"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
targetNamespace="[% conf.wwsympa_url %]/wsdl"
xmlns:tns="[% conf.wwsympa_url %]/wsdl"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsdl="[% conf.soap_url %]/wsdl">

114 CHAPITRE 12. SYMPA SOAP SERVER

<!-- types part -->

<types>
<schema targetNamespace="[% conf.wwsympa_url %]/wsdl"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns="http://www.w3.org/2001/XMLSchema">

<complexType name="ArrayOfLists">
<complexContent>
<restriction base="SOAP-ENC:Array">
<attribute ref="SOAP-ENC:arrayType" wsdl:arrayType="tns:listType[]"/>
</restriction>
</complexContent>
</complexType>

<complexType name="ArrayOfString">
<complexContent>
<restriction base="SOAP-ENC:Array">
<attribute ref="SOAP-ENC:arrayType" wsdl:arrayType="string[]"/>
</restriction>
</complexContent>
</complexType>

<complexType name="listType">
<all>

<element name="listAddress" minOccurs="1" type="string"/>
<element name="homepage" minOccurs="0" type="string"/>
<element name="isSubscriber" minOccurs="0" type="boolean"/>
<element name="isOwner" minOccurs="0" type="boolean"/>
<element name="isEditor" minOccurs="0" type="boolean"/>
<element name="subject" minOccurs="0" type="string"/>

</all>
</complexType>
</schema>
</types>

<!-- message part -->

<message name="infoRequest">
<part name="listName" type="xsd:string"/>

</message>

<message name="infoResponse">
<part name="return" type="tns:listType"/>
</message>

12.5. THE WSDL SERVICE DESCRIPTION 115

<message name="complexWhichRequest">
</message>

<message name="complexWhichResponse">
<part name="return" type="tns:ArrayOfLists"/>
</message>

<message name="whichRequest">
</message>

<message name="whichResponse">
<part name="return" type="tns:ArrayOfString"/>
</message>

<message name="amIRequest">
<part name="list" type="xsd:string"/>
<part name="function" type="xsd:string"/>
<part name="user" type="xsd:string"/>
</message>

<message name="amIResponse">
<part name="return" type="xsd:boolean"/>
</message>

<message name="reviewRequest">
<part name="list" type="xsd:string"/>
</message>

<message name="reviewResponse">
<part name="return" type="tns:ArrayOfString"/>
</message>

<message name="signoffRequest">
<part name="list" type="xsd:string"/>
<part name="email" type="xsd:string" xsd:minOccurs="0"/>
</message>

<message name="signoffResponse">
<part name="return" type="xsd:boolean"/>
</message>

<message name="subscribeRequest">
<part name="list" type="xsd:string"/>
<part name="gecos" type="xsd:string" xsd:minOccurs="0"/>
</message>

<message name="addRequest">
<part name="list" type="xsd:string"/>
<part name="email" type="xsd:string"/>

116 CHAPITRE 12. SYMPA SOAP SERVER

<part name="gecos" type="xsd:string" xsd:minOccurs="0"/>
<part name="quiet" type="xsd:boolean" xsd:minOccurs="0"/>
</message>

<message name="addResponse">
<part name="return" type="xsd:boolean"/>
</message>

<message name="delRequest">
<part name="list" type="xsd:string"/>
<part name="email" type="xsd:string"/>
<part name="quiet" type="xsd:boolean" xsd:minOccurs="0"/>
</message>

<message name="delResponse">
<part name="return" type="xsd:boolean"/>
</message>

<message name="createListRequest">
<part name="list" type="xsd:string"/>
<part name="subject" type="xsd:string"/>
<part name="template" type="xsd:string"/>
<part name="description" type="xsd:string"/>
<part name="topics" type="xsd:string"/>
</message>

<message name="createListResponse">
<part name="return" type="xsd:boolean"/>
</message>

<message name="closeListRequest">
<part name="list" type="xsd:string"/>
</message>

<message name="closeListResponse">
<part name="return" type="xsd:boolean"/>
</message>

<message name="subscribeResponse">
<part name="return" type="xsd:boolean"/>
</message>

<message name="loginRequest">
<part name="email" type="xsd:string"/>
<part name="password" type="xsd:string"/>
</message>

<message name="loginResponse">

12.5. THE WSDL SERVICE DESCRIPTION 117

<part name="return" type="xsd:string"/>
</message>

<message name="getUserEmailByCookieRequest">
<part name="cookie" type="xsd:string"/>
</message>

<message name="getUserEmailByCookieResponse">
<part name="return" type="xsd:string"/>
</message>

<message name="authenticateAndRunRequest">
<part name="email" type="xsd:string"/>
<part name="cookie" type="xsd:string"/>
<part name="service" type="xsd:string"/>
<part name="parameters" type="tns:ArrayOfString" xsd:minOccurs="0"/>
</message>

<message name="authenticateAndRunResponse">
<part name="return" type="tns:ArrayOfString" xsd:minOccurs="0"/>
</message>

<message name="authenticateRemoteAppAndRunRequest">
<part name="appname" type="xsd:string"/>
<part name="apppassword" type="xsd:string"/>
<part name="vars" type="xsd:string"/>
<part name="service" type="xsd:string"/>
<part name="parameters" type="tns:ArrayOfString" xsd:minOccurs="0"/>
</message>

<message name="authenticateRemoteAppAndRunResponse">
<part name="return" type="tns:ArrayOfString" xsd:minOccurs="0"/>
</message>

<message name="casLoginRequest">
<part name="proxyTicket" type="xsd:string"/>
</message>

<message name="casLoginResponse">
<part name="return" type="xsd:string"/>
</message>

<message name="listsRequest">
<part name="topic" type="xsd:string" xsd:minOccurs="0"/>
<part name="subtopic" type="xsd:string" xsd:minOccurs="0"/>
</message>

<message name="listsResponse">
<part name="listInfo" type="xsd:string"/>
</message>

118 CHAPITRE 12. SYMPA SOAP SERVER

<message name="complexListsRequest">
</message>

<message name="complexListsResponse">
<part name="return" type="tns:ArrayOfLists"/>
</message>

<message name="checkCookieRequest">
</message>

<message name="checkCookieResponse">
<part name="email" type="xsd:string"/>
</message>

<!-- portType part -->

<portType name="SympaPort">
<operation name="info">
<input message="tns:infoRequest" />
<output message="tns:infoResponse" />
</operation>
<operation name="complexWhich">
<input message="tns:complexWhichRequest" />
<output message="tns:complexWhichResponse" />
</operation>
<operation name="which">
<input message="tns:whichRequest" />
<output message="tns:whichResponse" />
</operation>
<operation name="amI">
<input message="tns:amIRequest" />
<output message="tns:amIResponse" />
</operation>
<operation name="add">
<input message="tns:addRequest" />
<output message="tns:addResponse" />
</operation>
<operation name="del">
<input message="tns:delRequest" />
<output message="tns:delResponse" />
</operation>
<operation name="createList">
<input message="tns:createListRequest" />
<output message="tns:createListResponse" />
</operation>
<operation name="closeList">
<input message="tns:closeListRequest" />
<output message="tns:closeListResponse" />

12.5. THE WSDL SERVICE DESCRIPTION 119

</operation>
<operation name="review">
<input message="tns:reviewRequest" />
<output message="tns:reviewResponse" />
</operation>
<operation name="subscribe">
<input message="tns:subscribeRequest" />
<output message="tns:subscribeResponse" />
</operation>
<operation name="signoff">
<input message="tns:signoffRequest" />
<output message="tns:signoffResponse" />
</operation>
<operation name="login">
<input message="tns:loginRequest" />
<output message="tns:loginResponse" />
</operation>
<operation name="casLogin">
<input message="tns:casLoginRequest" />
<output message="tns:casLoginResponse" />
</operation>
<operation name="getUserEmailByCookie">
<input message="tns:getUserEmailByCookieRequest" />
<output message="tns:getUserEmailByCookieResponse" />
</operation>
<operation name="authenticateAndRun">
<input message="tns:authenticateAndRunRequest" />
<output message="tns:authenticateAndRunResponse" />
</operation>
<operation name="authenticateRemoteAppAndRun">
<input message="tns:authenticateRemoteAppAndRunRequest" />
<output message="tns:authenticateRemoteAppAndRunResponse" />
</operation>
<operation name="lists">
<input message="tns:listsRequest" />
<output message="tns:listsResponse" />
</operation>
<operation name="complexLists">
<input message="tns:complexListsRequest" />
<output message="tns:complexListsResponse" />
</operation>
<operation name="checkCookie">
<input message="tns:checkCookieRequest" />
<output message="tns:checkCookieResponse" />
</operation>
</portType>

<!-- Binding part -->

120 CHAPITRE 12. SYMPA SOAP SERVER

<binding name="SOAP" type="tns:SympaPort">
<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="info">
<soap:operation soapAction="urn:sympasoap#info"/>
<input>
<soap:body use="encoded"
namespace="urn:sympasoap"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</input>
<output>
<soap:body use="encoded"
namespace="urn:sympasoap"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</output>
</operation>
<operation name="complexWhich">
<soap:operation soapAction="urn:sympasoap#complexWhich"/>
<input>
<soap:body use="encoded"
namespace="urn:sympasoap"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</input>
<output>
<soap:body use="encoded"
namespace="urn:sympasoap"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</output>
</operation>
<operation name="which">
<soap:operation soapAction="urn:sympasoap#which"/>
<input>
<soap:body use="encoded"
namespace="urn:sympasoap"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</input>
<output>
<soap:body use="encoded"
namespace="urn:sympasoap"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</output>
</operation>
<operation name="amI">
<soap:operation soapAction="urn:sympasoap#amI"/>
<input>
<soap:body use="encoded"
namespace="urn:sympasoap"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</input>
<output>
<soap:body use="encoded"

12.5. THE WSDL SERVICE DESCRIPTION 121

namespace="urn:sympasoap"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</output>
</operation>
<operation name="add">
<soap:operation soapAction="urn:sympasoap#add"/>
<input>
<soap:body use="encoded"
namespace="urn:sympasoap"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</input>
<output>
<soap:body use="encoded"
namespace="urn:sympasoap"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</output>
</operation>
<operation name="del">
<soap:operation soapAction="urn:sympasoap#del"/>
<input>
<soap:body use="encoded"
namespace="urn:sympasoap"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</input>
<output>
<soap:body use="encoded"
namespace="urn:sympasoap"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</output>
</operation>
<operation name="createList">
<soap:operation soapAction="urn:sympasoap#createList"/>
<input>
<soap:body use="encoded"
namespace="urn:sympasoap"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</input>
<output>
<soap:body use="encoded"
namespace="urn:sympasoap"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</output>
</operation>
<operation name="closeList">
<soap:operation soapAction="urn:sympasoap#closeList"/>
<input>
<soap:body use="encoded"
namespace="urn:sympasoap"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</input>

122 CHAPITRE 12. SYMPA SOAP SERVER

<output>
<soap:body use="encoded"
namespace="urn:sympasoap"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</output>
</operation>
<operation name="review">
<soap:operation soapAction="urn:sympasoap#review"/>
<input>
<soap:body use="encoded"
namespace="urn:sympasoap"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</input>
<output>
<soap:body use="encoded"
namespace="urn:sympasoap"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</output>
</operation>
<operation name="subscribe">
<soap:operation soapAction="urn:sympasoap#subscribe"/>
<input>
<soap:body use="encoded"
namespace="urn:sympasoap"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</input>
<output>
<soap:body use="encoded"
namespace="urn:sympasoap"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</output>
</operation>
<operation name="signoff">
<soap:operation soapAction="urn:sympasoap#signoff"/>
<input>
<soap:body use="encoded"
namespace="urn:sympasoap"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</input>
<output>
<soap:body use="encoded"
namespace="urn:sympasoap"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</output>
</operation>
<operation name="login">
<soap:operation soapAction="urn:sympasoap#login"/>
<input>
<soap:body use="encoded"
namespace="urn:sympasoap"

12.5. THE WSDL SERVICE DESCRIPTION 123

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</input>
<output>
<soap:body use="encoded"
namespace="urn:sympasoap"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</output>
</operation>
<operation name="casLogin">
<soap:operation soapAction="urn:sympasoap#casLogin"/>
<input>
<soap:body use="encoded"
namespace="urn:sympasoap"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</input>
<output>
<soap:body use="encoded"
namespace="urn:sympasoap"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</output>
</operation>
<operation name="getUserEmailByCookie">
<soap:operation soapAction="urn:sympasoap#getUserEmailByCookie"/>
<input>
<soap:body use="encoded"
namespace="urn:sympasoap"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</input>
<output>
<soap:body use="encoded"
namespace="urn:sympasoap"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</output>
</operation>
<operation name="authenticateAndRun">
<soap:operation soapAction="urn:sympasoap#authenticateAndRun"/>
<input>
<soap:body use="encoded"
namespace="urn:sympasoap"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</input>
<output>
<soap:body use="encoded"
namespace="urn:sympasoap"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</output>
</operation>
<operation name="authenticateRemoteAppAndRun">
<soap:operation soapAction="urn:sympasoap#authenticateRemoteAppAndRun"/>
<input>

124 CHAPITRE 12. SYMPA SOAP SERVER

<soap:body use="encoded"
namespace="urn:sympasoap"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</input>
<output>
<soap:body use="encoded"
namespace="urn:sympasoap"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</output>
</operation>
<operation name="lists">
<soap:operation soapAction="urn:sympasoap#lists"/>
<input>
<soap:body use="encoded"
namespace="urn:sympasoap"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</input>
<output>
<soap:body use="encoded"
namespace="urn:sympasoap"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</output>
</operation>
<operation name="complexLists">
<soap:operation soapAction="urn:sympasoap#complexLists"/>
<input>
<soap:body use="encoded"
namespace="urn:sympasoap"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</input>
<output>
<soap:body use="encoded"
namespace="urn:sympasoap"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</output>
</operation>
<operation name="checkCookie">
<soap:operation soapAction="urn:sympasoap#checkCookie"/>
<input>
<soap:body use="encoded"
namespace="urn:sympasoap"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</input>
<output>
<soap:body use="encoded"
namespace="urn:sympasoap"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</output>
</operation>
</binding>

12.6. CLIENT-SIDE PROGRAMMING 125

<!-- service part -->

<service name="SympaSOAP">
<port name="SympaPort" binding="tns:SOAP">
<soap:address location="[% conf.soap_url %]"/>
</port>
</service>

</definitions>

12.6 Client-side programming

Sympa is distributed with 2 sample clients written in Perl and in PHP. Sympa SOAP
server has also been successfully tested with a UPortal Chanel as a Java client
(using Axis). The sample PHP SOAP client has been installed on our demo server :
http ://demo.sympa.org/sampleClient.php.

Depending on your programming language and the SOAP library you’re using, you
will either directly contact the SOAP service (as with Perl SOAP : :Lite library) or first
load the WSDL description of the service (as with PHP nusoap or Java Axis). Axis is
able to create a stub from the WSDL document.

The WSDL document describing the service should be fetch through WWSympa’s
dedicated URL : http ://your.server/sympa/wsdl.

Note : the login() function maintains a login session using HTTP cookies. If you are
not able to maintain this session by analysing and sending appropriate cookies under
SOAP, then you should use the authenticateAndRun() function that does not require
cookies to authenticate.

12.6.1 Writing a Java client with Axis

First, download jakarta-axis (http ://ws.apache.org/axis/)

You must add the libraries provided with jakarta axis (v ¿1.1) to you CLASSPATH.
These libraries are :

http://demo.sympa.org/sampleClient.php

126 CHAPITRE 12. SYMPA SOAP SERVER

– axis.jar
– saaj.jar
– commons-discovery.jar
– commons-logging.jar
– xercesImpl.jar
– jaxrpc.jar
– xml-apis.jar
– jaas.jar
– wsdl4j.jar
– soap.jar

Next, you have to generate client java classes files from the sympa WSDL url. Use the
following command :

java org.apache.axis.wsdl.WSDL2Java -av WSDL URL

For example :

java org.apache.axis.wsdl.WSDL2Java -av http://demo.sympa.org/sympa/wsdl

Exemple of screen output during generation of java files :

Parsing XML file: http://demo.sympa.org/sympa/wsdl
Generating org/sympa/demo/sympa/msdl/ListType.java
Generating org/sympa/demo/sympa/msdl/SympaPort.java
Generating org/sympa/demo/sympa/msdl/SOAPStub.java
Generating org/sympa/demo/sympa/msdl/SympaSOAP.java
Generating org/sympa/demo/sympa/msdl/SympaSOAPLocator.java

If you need more information or more generated classes (to have the server-side
classes or junit testcase classes for example), you can get a list of switches :

java org.apache.axis.wsdl.WSDL2Java -h

The reference page is :
http ://ws.apache.org/axis/java/reference.html

Take care of Test classes generated by axis, there are not useable as is. You have to stay
connected between each test. To use junit testcases, before each soap operation tested,
you must call the authenticated connexion to sympa instance.

12.6. CLIENT-SIDE PROGRAMMING 127

Here is a simple Java code that invokes the generated stub to perform a casLogin() and
a which() on the remote Sympa SOAP server :

SympaSOAP loc = new SympaSOAPLocator();
((SympaSOAPLocator)loc).setMaintainSession(true);
SympaPort tmp = loc.getSympaPort();
String _value = tmp.casLogin(_ticket);
String _cookie = tmp.checkCookie();
String[] _abonnements = tmp.which();

128 CHAPITRE 12. SYMPA SOAP SERVER

Chapitre 13

Authentication

Sympa needs to authenticate users (subscribers, owners, moderators, listmaster) on both
its mail and web interface to then apply appropriate privileges (authorization process)
to subsequent requested actions. Sympa is able to cope with multiple authentication
means on the client side and when using user+password it can validate these credentials
against LDAP authentication backends.

When contacted on the mail interface Sympa has 3 authentication levels. Lower level
is to trust the From: SMTP header field. A higher level of authentication will require
that the user confirms his/her message. The strongest supported authentication method
is S/MIME (note that Sympa also deals with S/MIME encrypted messages).

On the Sympa web interface (WWSympa) the user can authenticate in 4 different ways
(if appropriate setup has been done on Sympa serveur). Default authentication mean
is via the user’s email address and a password managed by Sympa itself. If an LDAP
authentication backend (or multiple) has been defined, then the user can authentication
with his/her LDAP uid and password. Sympa is also able to delegate the authentication
job to a web Single SignOn system ; currently CAS (the Yale University system) or
a generic SSO setup, adapted to SSO products providing an Apache module. When
contacted via HTTPS, Sympa can make use of X509 client certificates to authenticate
users.

The authorization process in Sympa (authorization scenarios) refers to authentication
methods. The same authorization scenarios are used for both mail and web accesss ;
therefore some authentication methods are considered as equivalent : mail confirmation
(on the mail interface) is equivalent to password authentication (on the web interface) ;
S/MIME authentication is equivalent to HTTPS with client certificate authentication.
Each rule in authorization scenarios requires an authentication method (smtp,md5 or
smime) ; if the required authentication method was not used, a higher authentication
mode can be requested.

129

http://www.yale.edu/tp/auth/

130 CHAPITRE 13. AUTHENTICATION

13.1 S/MIME and HTTPS authentication

Chapter 27.2 (page 250) deals with Sympa and S/MIME signature. Sympa uses
OpenSSL library to work on S/MIME messages, you need to configure some related
Sympa parameters : 27.4.3 (page 251).

Sympa HTTPS authentication is based on Apache+mod SSL that provide the requi-
red authentication information via CGI environment variables. You will need to edit
Apache configuration to allow HTTPS access and require X509 client certificate. Here
is a sample Apache configuration

SSLEngine on
SSLVerifyClient optional
SSLVerifyDepth 10
...
<Location /sympa>

SSLOptions +StdEnvVars
SetHandler fastcgi-script

</Location>

If you are using the SubjAltName, then you additionaly need to export the certifi-
cate data because of a mod ssl bug. You will also need to install the textindex Crypt-
OpenSSL-X509 CPAN module. Add this option to the Apache configuration file :

SSLOptions +ExportCertData

13.2 Authentication with email address, uid or alter-
nate email address

Sympa stores the data relative to the subscribers in a DataBase. Among these data :
password, email exploited during the Web authentication. The module of LDAP au-
thentication allows to use Sympa in an intranet without duplicating user passwords.

This way users can indifferently authenticate with their ldap uid, their alternate email
or their canonic email stored in the LDAP directory.

Sympa gets the canonic email in the LDAP directory with the ldap uid or the alter-
nate email. Sympa will first attempt an anonymous bind to the directory to get the
user’s DN, then Sympa will bind with the DN and the user’s ldap password in or-
der to perform an efficient authentication. This last bind will work only if the good

13.3. GENERIC SSO AUTHENTICATION 131

ldap password is provided. Indeed the value returned by the bind(DN,ldap password)
is tested.

Example : a person is described by

Dn:cn=Fabrice Rafart,
ou=Siege ,
o=MaSociete ,
c=FR Objectclass:
person Cn: Fabrice Rafart
Title: Network Responsible
O: Siege
Or: Data processing
Telephonenumber: 01-00-00-00-00
Facsimiletelephonenumber:01-00-00-00-00
L:Paris
Country: France

uid: frafart
mail: Fabrice.Rafart@MaSociete.fr

alternate_email: frafart@MaSociete.fr
alternate:rafart@MaSociete.fr

So Fabrice Rafart can be authenticated with : frafart, Fabrice.Rafart@MaSociete.fr,
frafart@MaSociete.fr,Rafart@MaSociete.fr. After this operation, the address in the
field FROM will be the Canonic email, in this case Fabrice.Rafart@MaSociete.fr. That
means that Sympa will get this email and use it during all the session until you clearly
ask Sympa to change your email address via the two pages : which and pref.

13.3 Generic SSO authentication

The authentication method has first been introduced to allow interraction with Shibbo-
leth, Internet2’s inter-institutional authentication system. But it should be usable with
any SSO system that provides an Apache authentication module being able to protect
a specified URL on the site (not the whole site). Here is a sample httpd.conf that shib-
protects the associated Sympa URL :

...
<Location /sympa/sso_login/inqueue>
AuthType shibboleth
require affiliation ~ ^member@.+

</Location>
...

Sympa will get user attributes via environment variables. In the most simple case the
SSO will provide the user email address. If not, Sympa can be configured to verify
an email address provided by the user hiself or to look for the user email address in a
LDAP directory (the search filter will make use of user information inherited from the
SSO Apache module).

http://shibboleth.internet2.edu/
http://shibboleth.internet2.edu/

132 CHAPITRE 13. AUTHENTICATION

To plug a new SSO server in your Sympa server you should add a generic sso para-
graph (describing the SSO service) in your auth.conf configuration file (See 13.5.3,
page 137). Once this paragraph has been added, the SSO service name will be automa-
tically added to the web login menu.

Apart from the user email address, the SSO can provide other user attributes that Sympa
will store in the user table DB table (for persistancy) and make them available in the
[user attributes] structure that you can use within authorization scenarios (see 14.1,
page 144) or in web templates via the [% user.attributes %] structure.

13.4 CAS-based authentication

CAS is Yale university SSO software. Sympa can use CAS authentication service.

The listmaster should define at least one or more CAS servers (cas paragraph) in
auth.conf. If non blocking redirection parameter was set for a CAS server then
Sympa will try a transparent login on this server when the user accesses the web inter-
face. If one CAS server redirect the user to Sympa with a valid ticket Sympa receives a
user ID from the CAS server. It then connects to the related LDAP directory to get the
user email address. If no CAS server returns a valid user ID, Sympa will let the user
either select a CAS server to login or perform a Sympa login.

13.5 auth.conf

The /usr/local/sympa-os/etc/auth.conf configuration file contains numerous
parameters which are read on start-up of Sympa. If you change this file, do not forget
that you will need to restart wwsympa.fcgi afterwards.

The /usr/local/sympa-os/etc/auth.conf is organised in paragraphs. Each para-
graph describes an authentication service with all required parameters to perform an
authentication using this service. Current version of Sympa can perform authentica-
tion through LDAP directories, using an external Single Sign-On Service (like CAS or
Shibboleth), or using internal user table.

The login page contains 2 forms : the login form and the SSO. When users hit
the login form, each ldap or user table authentication paragraph is applied unless
email adress input from form match the negative regexp or do not match regexp.
negative regexp and regexp can be defined for earch ldap or user table authen-
tication service so administrator can block some authentication methode for class of
users.

The segond form in login page contain the list of CAS server so user can choose expli-
citely his CAS service.

13.5. AUTH.CONF 133

Each paragraph start with one of the keyword cas, ldap or user table

The /usr/local/sympa-os/etc/auth.conf file contains directives in the follo-
wing format :

paragraphs
keyword value
paragraphs
keyword value

Comments start with the # character at the beginning of a line.

Empty lines are also considered as comments and are ignored at the beginning. After
the first paragraph they are considered as paragraphs separators. There should only be
one directive per line, but their order in the paragraph is of no importance.

Example :

#Configuration file auth.conf for the LDAP authentification
#Description of parameters for each directory

cas
base_url https://sso-cas.cru.fr
non_blocking_redirection on
auth_service_name cas-cru
ldap_host ldap.cru.fr:389

ldap_get_email_by_uid_filter (uid=[uid])
ldap_timeout 7
ldap_suffix dc=cru,dc=fr
ldap_scope sub
ldap_email_attribute mail

The URL corresponding to the service_id should be protected by the SSO (Shibboleth in the exampl)
The URL would look like http://yourhost.yourdomain/sympa/sso_login/inqueue in the following example
generic_sso

service_name InQueue Federation
service_id inqueue
http_header_prefix HTTP_SHIB
email_http_header HTTP_SHIB_EMAIL_ADDRESS

The email address is not provided by the user home institution
generic_sso

service_name Shibboleth Federation
service_id myfederation
http_header_prefix HTTP_SHIB
netid_http_header HTTP_SHIB_EMAIL_ADDRESS

134 CHAPITRE 13. AUTHENTICATION

internal_email_by_netid 1
force_email_verify 1

ldap
regexp univ-rennes1\.fr
host ldap.univ-rennes1.fr:389
timeout 30
suffix dc=univ-rennes1,dc=fr
get_dn_by_uid_filter (uid=[sender])
get_dn_by_email_filter (|(mail=[sender])(mailalternateaddress=[sender]))
email_attribute mail
alternative_email_attribute mailalternateaddress,ur1mail
scope sub
use_ssl 1
ssl_version sslv3
ssl_ciphers MEDIUM:HIGH

ldap

host ldap.univ-nancy2.fr:392,ldap1.univ-nancy2.fr:392,ldap2.univ-nancy2.fr:392
timeout 20
bind_dn cn=sympa,ou=people,dc=cru,dc=fr
bind_password sympaPASSWD
suffix dc=univ-nancy2,dc=fr
get_dn_by_uid_filter (uid=[sender])
get_dn_by_email_filter (|(mail=[sender])(n2atraliasmail=[sender]))
alternative_email_attribute n2atrmaildrop
email_attribute mail
scope sub

authentication_info_url http://sso.univ-nancy2.fr/

user_table
negative_regexp ((univ-rennes1)|(univ-nancy2))\.fr

13.5.1 user table paragraph

The user table paragraph is related to sympa internal authentication by email and pass-
word. It is the simplest one the only parameters are regexp or negative regexp
which are perl regular expressions applied on a provided email address to select or
block this authentication method for a subset of email addresses.

13.5. AUTH.CONF 135

13.5.2 ldap paragraph

– regexp and negative regexp Same as in user table paragraph : if a provided email
address (does not apply to an uid), then the regular expression will be applied to find
out if this LDAP directory can be used to authenticate a subset of users.

– host

This keyword is mandatory. It is the domain name used in order to bind to the
directory and then to extract informations. You must mention the port number after
the server name. Server replication is supported by listing several servers separated
by commas.
Example :

host ldap.univ-rennes1.fr:389
host ldap0.university.com:389,ldap1.university.com:389,ldap2.university.com:389

– timeout

It corresponds to the timelimit in the Search fonction. A timelimit that restricts the
maximum time (in seconds) allowed for a search. A value of 0 (the default), means
that no timelimit will be requested.

– suffix

The root of the DIT (Directory Information Tree). The DN that is the base object
entry relative to which the search is to be performed.
Example: dc=university,dc=fr

– bind dn

If anonymous bind is not allowed on the LDAP server, a DN and password can be
used.

– bind password

This password is used, combined with the bind dn above.
– get dn by uid filter

Defines the search filter corresponding to the ldap uid. (RFC 2254 compliant). If you
want to apply the filter on the user, use the variable ’ [sender] ’. It will work with
every type of authentication (uid, alternate email..).
Example :

(Login = [sender])
(|(ID = [sender])(UID = [sender]))

– get dn by email filter

Defines the search filter corresponding to the email addresses (canonic and alter-
native).(RFC 2254 compliant). If you want to apply the filter on the user, use the
variable ’ [sender] ’. It will work with every type of authentication (uid, alter-
nate email..).

136 CHAPITRE 13. AUTHENTICATION

Example : a person is described by

Dn:cn=Fabrice Rafart,
ou=Siege ,
o=MaSociete ,
c=FR Objectclass:
person Cn: Fabrice Rafart
Title: Network Responsible
O: Siege
Or: Data processing
Telephonenumber: 01-00-00-00-00
Facsimiletelephonenumber:01-00-00-00-00
L:Paris
Country: France

uid: frafart
mail: Fabrice.Rafart@MaSociete.fr

alternate_email: frafart@MaSociete.fr
alternate:rafart@MaSociete.fr

The filters can be :

(mail = [sender])
(| (mail = [sender])(alternate_email = [sender]))
(| (mail = [sender])(alternate_email = [sender])(alternate = [sender]))

– email attribute

The name of the attribute for the canonic email in your directory : for instance
mail, canonic email, canonic address ... In the previous example the canonic email
is ’mail’.

– alternative email attribute

The name of the attribute for the alternate email in your directory : for instance
alternate email, mailalternateaddress, ... You make a list of these attributes separated
by commas.
With this list Sympa creates a cookie which contains various information : the user
is authenticated via Ldap or not, his alternate email. To store the alternate email is
interesting when you want to canonify your preferences and subscriptions. That is
to say you want to use a unique address in User table and Subscriber table which is
the canonic email.

– scope

(Default value: sub) By default the search is performed on the whole tree below the
specified base object. This may be changed by specifying a scope :

13.5. AUTH.CONF 137

– base
Search only the base object.

– one
Search the entries immediately below the base object.

– sub
Search the whole tree below the base object. This is the default.

– authentication info url

Defines the URL of a document describing LDAP password management. When
hitting Sympa’s Send me a password button, LDAP users will be redirected to this
URL.

– use ssl
If set to 1, connection to the LDAP server will use SSL (LDAPS).

– ssl version
This defines the version of the SSL/TLS protocol to use. Defaults of Net : :LDAPS
to sslv2/3, other possible values are sslv2, sslv3, and tlsv1.

– ssl ciphers
Specify which subset of cipher suites are permissible for this connection, using the
standard OpenSSL string format. The default value of Net : :LDAPS for ciphers is
ALL, which permits all ciphers, even those that don’t encrypt !

13.5.3 generic sso paragraph

– service name
This is the SSO service name that will be proposed to the user in the login banner
menu.

– service id
This service ID is used as a parameter by sympa to refer to the SSO service (instead
of the service name).
A corresponding URL on the local web server should be protec-
ted by the SSO system ; this URL would look like http ://you-
rhost.yourdomain/sympa/sso login/inqueue if the service id is inqueue.

– http header prefix
Sympa gets user attributes from environment variables comming from the web ser-
ver. These variables are then stored in the user table DB table for later use in authori-
zation scenarios (in structure). Only environment variables starting with the defined
prefix will kept.

– email http header
This parameter defines the environment variable that will contain the authenticated
user’s email address.

The following parameters define how Sympa can verify the user email address, either
provided by the SSO or by the user himself :

– internal email by netid
If set to 1 this parameter makes Sympa use its netidmap table to associate NetIDs to
user email address.

138 CHAPITRE 13. AUTHENTICATION

– netid http header
This parameter defines the environment variable that will contain the user’s identifier.
This netid will then be associated with an email address either provided by the user.

– force email verify
If set to 1 this parameter makes Sympa verify the user’s email address. If the email
address was not provided by the authentication module, then the user is requested to
provide a valid email address.

The following parameters define how Sympa can retrieve the user email address ; these
are only useful if the email http header entry was not defined :

– ldap host
The LDAP host Sympa will connect to fetch user email. The ldap host include the
port number and it may be a comma separated list of redondant host.

– ldap bind dn
The DN used to bind to this server. Anonymous bind is used if this parameter is not
defined.

– ldap bind password
The password used unless anonymous bind is used.

– ldap suffix
The LDAP suffix used when seraching user email

– ldap scope
The scope used when seraching user email, possible values are sub, base, and one.

– ldap get email by uid filter
The filter to perform the email search. It can refer to any environment variables
inherited from the SSO module, as shown below. Example :

ldap_get_email_by_uid_filter (mail=[SSL_CLIENT_S_DN_Email])

– ldap email attribute
The attribut name to be used as user canonical email. In the current version of sympa
only the first value returned by the LDAP server is used.

– ldap timeout
The time out for the search.

– ldap use ssl
If set to 1, connection to the LDAP server will use SSL (LDAPS).

– ldap ssl version
This defines the version of the SSL/TLS protocol to use. Defaults of Net : :LDAPS
to sslv2/3, other possible values are sslv2, sslv3, and tlsv1.

– ldap ssl ciphers
Specify which subset of cipher suites are permissible for this connection, using the
OpenSSL string format. The default value of Net : :LDAPS for ciphers is ALL, which
permits all ciphers, even those that don’t encrypt !

13.5.4 cas paragraph

– auth service name
The friendly user service name as shown by Sympa in the login page.

13.5. AUTH.CONF 139

– host (OBSOLETE)
This parameter has been replaced by base url parameter

– base url

The base URL of the CAS server.
– non blocking redirection

This parameter concern only the first access to Sympa services by a user, it activate or
not the non blocking redirection to the related cas server to check automatically if the
user as been previously authenticated with this CAS server. Possible values are on
off, default is on. The redirection to CAS is use with the cgi parameter gateway=1
that specify to CAS server to always redirect the user to the origine URL but just
check if the user is logged. If active, the SSO service is effective and transparent, but
in case the CAS server is out of order the access to Sympa services is impossible.

– login uri (OBSOLETE)
This parameter has been replaced by login path parameter.

– login path (OPTIONAL)
The login service path

– check uri (OBSOLETE)
This parameter has been replaced by service validate path parameter

– service validate path (OPTIONAL)
The ticket validation service path

– logout uri (OBSOLETE)
This parameter has been replaced by logout path parameter

– logout path (OPTIONAL)
The logout service path

– proxy path (OPTIONAL)
The proxy service path, used by Sympa SOAP server only.

– proxy validate path (OPTIONAL)
The proxy validate service path, used by Sympa SOAP server only.

– ldap host
The LDAP host Sympa will connect to fetch user email when user uid is return
by CAS service. The ldap host include the port number and it may be a comma
separated list of redondant host.

– ldap bind dn
The DN used to bind to this server. Anonymous bind is used if this parameter is not
defined.

– ldap bind password
The password used unless anonymous bind is used.

– ldap suffix
The LDAP suffix used when seraching user email

– ldap scope
The scope used when seraching user email, possible values are sub, base, and one.

– ldap get email by uid filter
The filter to perform the email search.

– ldap email attribute
The attribut name to be use as user canonical email. In the current version of sympa
only the first value returned by the LDAP server is used.

– ldap timeout
The time out for the search.

140 CHAPITRE 13. AUTHENTICATION

– ldap use ssl
If set to 1, connection to the LDAP server will use SSL (LDAPS).

– ldap ssl version
This defines the version of the SSL/TLS protocol to use. Defaults of Net : :LDAPS
to sslv2/3, other possible values are sslv2, sslv3, and tlsv1.

– ldap ssl ciphers
Specify which subset of cipher suites are permissible for this connection, using the
OpenSSL string format. The default value of Net : :LDAPS for ciphers is ALL, which
permits all ciphers, even those that don’t encrypt !

13.6 Sharing WWSympa authentication with other ap-
plications

If your are not using a web Single SignOn system you might want to make other web
applications collaborate with Sympa, and share the same authentication system. Sympa
uses HTTP cookies to carry users’ auth information from page to page. This cookie car-
ries no information concerning privileges. To make your application work with Sympa,
you have two possibilities :

– Delegating authentication operations to WWSympa
If you want to avoid spending a lot of time programming a CGI to do Login, Logout
and Remindpassword, you can copy WWSympa’s login page to your application, and
then make use of the cookie information within your application. The cookie format
is :
sympauser=<user_email>:<checksum>where <user email> is the user’s complete e-mail address, and <checksum> are the 8
last bytes of the a MD5 checksum of the <user email>+Sympa cookie configuration
parameter. Your application needs to know what the cookie parameter is, so it can
check the HTTP cookie validity ; this is a secret shared between WWSympa and your
application. WWSympa’s loginrequest page can be called to return to the referer URL
when an action is performed. Here is a sample HTML anchor :
Login page
You can also have your own HTML page submitting data to wwsympa.fcgi CGI. If
you’re doing so, you can set the referer variable to another URI. You can also set
the failure referer to make WWSympa redirect the client to a different URI if
login fails.

– Using WWSympa’s HTTP cookie format within your auth module
To cooperate with WWSympa, you simply need to adopt its HTTP cookie format
and share the secret it uses to generate MD5 checksums, i.e. the cookie configura-
tion parameter. In this way, WWSympa will accept users authenticated through your
application without further authentication.

13.7. PROVIDE A SYMPA LOGIN FORM IN ANOTHER APPLICATION 141

13.7 Provide a Sympa login form in another applica-
tion

You can easily trigger a Sympa login from within another web page. The login form
should look like this :

<FORM ACTION="http://listes.cru.fr/sympa" method="post">
<input type="hidden" name="previous_action" value="arc" />
Access web archives of list
<select name="previous_list">
<option value="sympa-users" >sympa-users</option>
</select>

<input type="hidden" name="action" value="login" />
<label for="email">email address :
<input type="text" name="email" id="email" size="18" value="" /></label>

<label for="passwd" >password :
<input type="password" name="passwd" id="passwd" size="8" /></label>

<input class="MainMenuLinks" type="submit" name="action_login" value="Login and access web archives" />

</FORM>

The example above does not only perform the login action but also redirects the
user to another sympa page, a list web archives here. The previous action and
previous list variable define the action that will be performed after the login is
done.

142 CHAPITRE 13. AUTHENTICATION

Chapitre 14

Authorization scenarios

List parameters controlling the behavior of commands are linked to different
authorization scenarios. For example : the send private parameter is related
to the send.private scenario. There are four possible locations for a authoriza-
tion scenario. When Sympa seeks to apply an authorization scenario, it looks
first in the related list directory /usr/local/sympa-os/expl/<list>/scenari.
If it does not find the file there, it scans the current robot configura-
tion directory /usr/local/sympa-os/etc/my.domain.org/scenari, then the
site’s configuration directory /usr/local/sympa-os/etc/scenari, and finally
/usr/local/sympa-os/bin/etc/scenari, which is the directory installed by the
Makefile.

An authorization scenario is a small configuration language to describe who can per-
form an operation and which authentication method is requested for it. An authorization
scenario is an ordered set of rules. The goal is to provide a simple and flexible way to
configure authorization and required authentication method for each operation.

Each authorization scenario rule contains :
– a condition : the condition is evaluated by Sympa. It can use variables such as [sender]

for the sender e-mail, [list] for the listname etc.
– an authentication method. The authentication method can be smtp, md5 or smime.

The rule is applied by Sympa if both condition and authentication method match the
runtime context. smtp is used if Sympa use the SMTP from : header , md5 is used if
a unique md5 key as been returned by the requestor to validate her message, smime
is used for signed messages (see 27.4.4, page 251).

– a returned atomic action that will be executed by Sympa if the rule matches
Example

del.auth
title.us deletion performed only by list owners, need authentication
title.fr suppression r\’eserv\’ee au propri\’etaire avec authentification

143

144 CHAPITRE 14. AUTHORIZATION SCENARIOS

title.es eliminacin reservada slo para el propietario, necesita autentificacin

is_owner([listname],[sender]) smtp -> request_auth
is_listmaster([sender]) smtp -> request_auth
true() md5,smime -> do_it

14.1 rules specifications

An authorization scenario consists of rules, evaluated in order beginning with the first.
Rules are defined as follows :

<rule> ::= <condition> <auth_list> -> <action>

<condition> ::= [!] <condition
| true ()
| all ()
| equal (<var>, <var>)
| match (<var>, /perl_regexp/)

| search (<named_filter_file>)
| is_subscriber (<listname>, <var>)
| is_owner (<listname>, <var>)
| is_editor (<listname>, <var>)
| is_listmaster (<var>)
| older (<date>, <date>) # true if first date is anterior to the second date
| newer (<date>, <date>) # true if first date is posterior to the second date
| CustomCondition::<package_name> (<var>*)

<var> ::= [email] | [sender] | [user-><user_key_word>] | [previous_email]
| [remote_host] | [remote_addr] | [user_attributes-><user_attributes_keyword>]

| [subscriber-><subscriber_key_word>] | [list-><list_key_word>] | [env-><env_var>]
| [conf-><conf_key_word>] | [msg_header-><smtp_key_word>] | [msg_body]
| [msg_part->type] | [msg_part->body] | [msg_encrypted] | [is_bcc] | [current_date]

| [topic-auto] | [topic-sender,] | [topic-editor] | [topic] | [topic-needed]
| <string>

[is_bcc] ::= set to 1 if the list is neither in To: nor Cc:

[sender] ::= email address of the current user (used on web or mail interface). Default value is ’nobody’

[previous_email] ::= old email when changing subscription email in preference page.

[msg_encrypted] ::= set to ’smime’ if the message was S/MIME encrypted

[topic-auto] ::= topic of the message if it has been automatically tagged

[topic-sender] ::= topic of the message if it has been tagged by sender

14.1. RULES SPECIFICATIONS 145

[topic-editor] ::= topic of the message if it has been tagged by editor

[topic] ::= topic of the message

[topic-needed] ::= the message has not got any topic and message topic are required for the list

/perl_regexp/ ::= a perl regular expression. Don’t forget to escape special characters (^, $, \{, \(, ...)
Check http://perldoc.perl.org/perlre.html for regular expression syntax.

<date> ::= ’<date_element> [+|- <date_element>]’

<date_element> ::= <epoch_date> | <var> | <date_expr>

<epoch_date> ::= <integer>

<date_expr> ::= <integer>y<integer>m<integer>d<integer>h<integer>min<integer>sec

<listname> ::= [listname] | <listname_string>

<auth_list> ::= <auth>,<auth_list> | <auth>

<auth> ::= smtp|md5|smime

<action> ::= do_it [,notify]
| do_it [,quiet]

| reject(reason=<reason_key>) [,quiet]
| reject(tt2=<tpl_name>) [,quiet]

| request_auth
| owner

| editor
| editorkey[,quiet]
| listmaster

<reason_key> ::= match a key in mail_tt2/authorization_reject.tt2 template corresponding to
an information message about the reason of the reject of the user

<tpl_name> ::= corresponding template (<tpl_name>.tt2) is send to the sender

<user_key_word> ::= email | gecos | lang | password | cookie_delay_user
| <additional_user_fields>

<user_attributes_key_word> ::= one of the user attributes provided by the SSO system via environment variables. The [user_attributes] structure is available only if user authenticated with a generic_sso.

<subscriber_key_word> ::= email | gecos | bounce | reception
| visibility | date | update_date

| <additional_subscriber_fields>

<list_key_word> ::= name | host | lang | max_size | priority | reply_to |
status | subject | account | total

146 CHAPITRE 14. AUTHORIZATION SCENARIOS

<conf_key_word> ::= domain | email | listmaster | default_list_priority |
sympa_priority | request_priority | lang | max_size

<named_filter_file> ::= filename ending with .ldap , .sql or .txt

<package_name> ::= name of a perl package in /etc/custom_conditions/ (small letters)

(Refer to 17.8, page 164 for date format definition)

The function to evaluate scenario is described in section 29.2.6, page 275.

perl regexp can contain the string [host] (interpreted at run time as the list or robot
domain). The variable notation [msg header-><smtp key word>] is interpreted as the
SMTP header value only when evaluating the authorization scenario for sending mes-
sages. It can be used, for example, to require editor validation for multipart messages.
[msg part->type] and [msg part->body] are the MIME parts content-types and bodies ;
the body is available for MIME parts in text/xxx format only.

The difference between editor and editorkey is, that with editor the message is simply
forwarded to the moderaotr. He then can forward it to the list, if he wishes. editorkey
assigns a key to the message and sends it to the moderator together with the message.
So the moderator can just send back the key to distribute the message. Please note,
that moderation from the webinterface is only possible when using editorkey, because
otherwise there is no copy of the message saved on the server.

A bunch of authorization scenarios is provided with the Sympa distribution ; they pro-
vide a large set of configuration that allow to create lists for most usage. But you will
probably create authorization scenarios for your own need. In this case, don’t forget to
restart Sympa and wwsympa because authorization scenarios are not reloaded dynami-
caly.

These standard authorization scenarios are located in the
/usr/local/sympa-os/bin/etc/scenari/ directory. Default scenarios are
named <command>.default.

You may also define and name your own authorization scenarios. Store them in
the /usr/local/sympa-os/etc/scenari directory. They will not be overwrit-
ten by Sympa release. Scenarios can also be defined for a particular virtual host
(using directory /usr/local/sympa-os/etc/<robot>/scenari) or for a list (
/usr/local/sympa-os/expl/<robot>/<list>/scenari). Sympa will not dy-
namically detect that a list config should be reloaded after a scenario has been
changed on disk.

Example :

Copy the previous scenario to scenari/subscribe.rennes1 :

14.2. NAMED FILTERS 147

equal([sender], ’userxxx@univ-rennes1.fr’) smtp,smime -> reject
match([sender], /univ-rennes1\.fr$/) smtp,smime -> do_it
true() smtp,smime -> owner

You may now refer to this authorization scenario in any list configuration file, for
example :

subscribe rennes1

14.2 Named Filters

At the moment Named Filters are only used in authorization scenarios. They enable to
select a category of people who will be authorized or not to realise some actions.

As a consequence, you can grant privileges in a list to people belonging to an LDAP
directory, an SQL database or an flat text file, thanks to an authorization scenario.

Note that the only a subset of variable available in the scenario context are available
here (including [sender] and [listname]).

14.2.1 LDAP Named Filters Definition

People are selected through an LDAP filter defined in a configura-
tion file. This file must have the extension ’.ldap’. It is stored in
/usr/local/sympa-os/etc/search filters/.

You must give several informations in order to create a LDAP Named Filter :
– host

A list of host :port LDAP directories (replicates) entries.
– suffix

Defines the naming space covered by the search (optional, depending on the LDAP
server).

– filter
Defines the LDAP search filter (RFC 2254 compliant). But you must absolutely take
into account the first part of the filter which is : (’mail attribute’ = [sender]) as shown
in the example. you will have to replce ’mail attribute’ by the name of the attribute
for the email. Sympa verifies if the user belongs to the category of people defined in
the filter.

– scope
By default the search is performed on the whole tree below the specified base object.
This may be changed by specifying a scope :
– base : Search only the base object.

148 CHAPITRE 14. AUTHORIZATION SCENARIOS

– one
Search the entries immediately below the base object.

– sub
Search the whole tree below the base object. This is the default.

– bind dn
If anonymous bind is not allowed on the LDAP server, a DN and password can be
used.

– bind password
This password is used, combined with the bind dn above.

example.ldap : we want to select the professors of mathematics in the university of
Rennes1 in France

host ldap.univ-rennes1.fr:389,ldap2.univ-rennes1.fr:390
suffix dc=univ-rennes1.fr,dc=fr
filter (&(canonic_mail = [sender])(EmployeeType = prof)(subject = math))
scope sub

14.2.2 SQL Named Filters Definition

People are selected through an SQL filter defined in a configura-
tion file. This file must have the extension ’.sql’. It is stored in
/usr/local/sympa-os/etc/search filters/.

To create an SQL Named Filter, you have to configure SQL host, database and options,
the same way you did it for the main Sympa database in sympa.conf. Of course you
can use different database and options. Sympa will open a new Database connection to
execute your statement.

Please refer to section 7.10, page 72 for a detailed explanation of each parameter.

Here, all database parameters have to be grouped in one sql named filter query
paragraph.

– db type
Format : db type mysql | SQLite | Pg | Oracle | Sybase Database
management system used. Mandatory and Case sensitive.

– db host
Database host name. Mandatory.

– db name
Name of database to query. Mandatory.

– statement
Mandatory. The SQL statement to execute to verify authorization. This statement
must returns 0 to refuse the action, or anything else to grant privileges. The SELECT
COUNT(*)... statement is the perfect query for this parameter. The keyword in the
SQL query will be replaced by the sender’s email.

14.2. NAMED FILTERS 149

– Optional parameters
Please refer to main sympa.conf section for description.
– db user
– db password
– db options
– db env
– db port
– db timeout

example.sql : we want to select the professors of mathematics in the university of
Rennes1 in France

sql_named_filter_query
db_type mysql
db_name people
db_host dbserver.rennes1.fr
db_user sympa
db_passwd pw_sympa_mysqluser
statement SELECT count(*) as c FROM users WHERE mail=[sender] AND EmployeeType=’PROFESSOR’ AND department=’mathematics’

14.2.3 Search Condition

The search condition is used in authorization scenarios which are defined and described
in (see 14)

The syntax of this rule is :

search(example.ldap) smtp,smime,md5 -> do_it
search(blacklist.txt) smtp,smime,md5 -> do_it

The variable used by ’search’ is the name of the LDAP Configuration file or a txt
matching enumeration

+Note that Sympa processes maintain a cache of processed search conditions to limit
access to the LDAP directory or SQL server ; each entry has a lifetime of 1 hour in the
cache.

When using .txt file extention, the file is read looking for a line that match the second
parameter (usually the user email address). Each line is a string where the char * can
be used once to mach any block. This feature is used by the blacklist implicit scenario
rule. (see ??)

The method of authentication does not change.

150 CHAPITRE 14. AUTHORIZATION SCENARIOS

14.3 scenario inclusion

Scenarios can also contain includes :

subscribe
include commonreject
match(, /cru\.fr$/) smtp,smime -> do_it

true() smtp,smime -> owner

In this case sympa applies recursively the scenario named include.commonreject
before introducing the other rules. This possibility was introduced in order to facilitate
the administration of common rules.

You can define a set of common scenario rules, used by all lists. in-
clude.<action>.header is automatically added to evaluated scenarios. Note that you will
need to restart Sympa processes to force reloading of list config files.

14.4 blacklist implicit rule

For each service listed in parameter use blacklist (see 7.4.4), the following implicit
scenario rule is added at the beginning of the scenario :

search(blacklist.txt) smtp,md5,pgp,smime -> reject,quiet

The goal is to block message or other service request from unwanted users. The black-
list can be defined for the robot or for the list. The one at the list level is to managed by
list owner or list editor via the web interface.

14.5 Custom perl package conditions

You can use a perl package of your own to evaluate a custom condition. It could be
usefull if you have very complex tasks to accomplish to evaluate your condition (web
services queries...). You write a perl module, place it in the CustomCondition names-
pace, with one verify fonction that have to return 1 to grant access, undef to throw an
error, or anything else to refuse the authorization.

This perl module :
– must be placed in a subdirectoy ’custom conditions’ of the ’etc’ directory of

your sympa installation, or of a robot

– its filename must be lowercase

14.6. HIDDING SCENARIO FILES 151

– must be placed in the CustomCondition namespace

– must contains one ’verify’ static fonction

– will receive all condition arguments as parameters

For example, lets write the smallest custom condition that always returns 1.

/home/sympa/etc/custom_conditions/yes.pm :

#!/usr/bin/perl

package CustomCondition::yes;

use strict;
use Log; # optional : we log parameters

sub verify {
my @args = @_;
foreach my $arg (@args) {
do_log (’debug3’, ’arg: %s’, $arg);

}
I always say ’yes’
return 1;

}
Packages must return true.
1;

We can use this custom condition that way :

CustomCondition::yes(,,) smtp,smime,md5 -> do_it
true() smtp,smime -> reject

Note that the ,, are optionnal, but it’s the way you can pass information to your pa-
ckage. Our yes.pm will print their values in the logs.

Remember that the package name has to be small letters, but the ’CustomCondition’
namespace is case sensitive. If your package return undef, the sender will receive an
’internal error’ mail. If it returns anything else but ’1’, the sender will receive a ’for-
bidden’ error.

14.6 Hidding scenario files

Because Sympa is distributed with many default scenario files, you may want to hidde
some of them to list owners (to make list admin menus shorter and readable). To hidde

152 CHAPITRE 14. AUTHORIZATION SCENARIOS

a scenario file you should create an empty file with the :ignore suffix. Depending
on where this file has been created will make it ignored at either a global, robot or list
level.

Example :

/usr/local/sympa-os/etc/my.domain.org/scenari/send.intranetorprivate :ignore

The intranetorprivate send scenario will be hidden (on the web admin interface),
at the my.domain.orgrobot level only.

Chapitre 15

virtual host

Sympa is designed to manage multiple distinct mailing list servers on a single host
with a single Sympa installation. Sympa virtual hosts are like Apache virtual hosting.
Sympa virtual host definition includes a specific email address for the robot itself and
its lists and also a virtual http server. Each robot provides access to a set of lists, each
list is related to only one robot.

Most configuration parameters can be redefined for each robot except general Sympa
installation parameters (binary and spool location, smtp engine, antivirus plugging,...).

The virtual host name as defined in Sympa documentation and configuration file refers
to the Internet domaine of the virtual host.

Note that the main limitation of virtual hosts in Sympa is that you cannot create 2 lists
with the same name (local part) among your virtual hosts.

15.1 How to create a virtual host

You don’t need to install several Sympa servers. A single sympa.pl daemon and one
or more fastcgi servers can serve all virtual host. Just configure the server environment
in order to accept the new domain definition.
– The DNS must be configured to define a new mail exchanger record (MX) to route

message to your server. A new host (A record) or alias (CNAME) are mandatory to
define the new web server.

– Configure your MTA (sendmail, postfix, exim, ...) to accept incoming messages for
the new robot domain. Add mail aliases for the robot :
Examples (with sendmail) :

sympa@your.virtual.domain: "| /usr/local/sympa-os/bin/queue sympa@your.virtual.domain"
listmaster@your.virtual.domain: "| /usr/local/sympa-os/bin/queue listmaster@your.virtual.domain"

153

154 CHAPITRE 15. VIRTUAL HOST

bounce+*@your.virtual.domain: "| /usr/local/sympa-os/bin/bouncequeue sympa@your.virtual.domain"\\

– Define a virtual host in your HTTPD server. The fastcgi servers defined in the
common section of you httpd server can be used by each virtual host. You don’t
need to run dedicated fascgi server for each virtual host.
Examples :

FastCgiServer /usr/local/sympa-os/bin/wwsympa.fcgi -processes 3 -idle-timeout 120
.....
<VirtualHost 195.215.92.16>
ServerAdmin webmaster@your.virtual.domain
DocumentRoot /var/www/your.virtual.domain
ServerName your.virtual.domain

<Location /sympa>
SetHandler fastcgi-script

</Location>

ScriptAlias /sympa /usr/local/sympa-os/bin/wwsympa.fcgi

Alias /static-sympa /usr/local/sympa-os/your.virtual.domain/static_content

</VirtualHost>

– Create a /usr/local/sympa-os/etc/your.virtual.domain/robot.conf
configuration file for the virtual host. Its format is a subset of sympa.conf and is
described in the next section ; a sample robot.conf is provided.

– Create a /usr/local/sympa-os/expl/your.virtual.domain/ directory that
will contain the virtual host mailing lists directories. This directory should have the
sympa user as its owner and must have read and write access for this user.

su sympa -c ’mkdir /usr/local/sympa-os/expl/your.virtual.domain’
chmod 750 /usr/local/sympa-os/expl/your.virtual.domain

15.2 robot.conf

A robot is named by its domain, let’s say my.domain.organd defined by
a directory /usr/local/sympa-os/etc/my.domain.org. This directory must
contain at least a robot.conf file. This files has the same format as
/usr/local/sympa-os/etc/sympa.conf (have a look at robot.conf in the sample
dir). Only the following parameters can be redefined for a particular robot :

– http host
This hostname will be compared with ’SERVER NAME’ environment variable in
wwsympa.fcgi to determine the current Virtual Host. You can a path at the end of
this parameter if you are running multiple virtual hosts on the same host.

Examples: \\
http_host myhost.mydom
http_host myhost.mydom/sympa

15.2. ROBOT.CONF 155

– host
This is the equivalent of the host sympa.conf parameter. The default for this para-
meter is the name of the virtual host (ie the name of the subdirectory).

– wwsympa url
The base URL of WWSympa

– soap url
The base URL of Sympa’s SOAP server (if it is running ; see 12, page 111)

– cookie domain
– email
– title
– default home
– create list
– lang
– supported lang
– log smtp
– listmaster
– max size
– css path
– css url
– static content path
– static content url
– pictures feature
– pictures max size
– logo html definition
– color 0, color 1 ... color 15
– deprecated color definition dark color, light color, text color, bg color,
error color, selected color, shaded color

These settings overwrite the equivalent global parameter defined in
/usr/local/sympa-os/etc/sympa.conf for my.domain.orgrobot ; the main
listmaster still has privileges on Virtual Robots though. The http host parameter is
compared by wwsympa with the SERVER NAME environment variable to recognize
which robot is in used.

15.2.1 Robot customization

In order to customize the web look and feel, you may edit the CSS definition. CSS
are defined in a template named css.tt2. Any robot can use static css file for making
Sympa web interface faster. Then you can edit this static definition and change web
style. Please refer to css path css url. You can also quickly introduce a logo in left
top corner of all pages configuring logo html definition parameter in robot.conf
file.

In addition, if needed, you can customize each virtual host using its set of templates
and authorization scenarios.

/usr/local/sympa-os/etc/my.domain.org/web tt2/,

156 CHAPITRE 15. VIRTUAL HOST

/usr/local/sympa-os/etc/my.domain.org/mail tt2/,
/usr/local/sympa-os/etc/my.domain.org/scenari/ directories are searched
when loading templates or scenari before searching into /usr/local/sympa-os/etc
and /usr/local/sympa-os/bin/etc. This allows to define different privileges and
a different GUI for a Virtual Host.

15.3 Managing multiple virtual hosts

If you are managing more than 2 virtual hosts, then you might cinsider moving
all the mailing lists in the default robot to a dedicated virtual host located in the
/usr/local/sympa-os/expl/my.domain.org/ directory. The main benefit of this
organisation is the ability to define default configuration elements (templates or autho-
rization scenarios) for this robot without inheriting them within other virtual hosts.

To create such a virtual host, you need to create
/usr/local/sympa-os/expl/my.domain.org/ and
/usr/local/sympa-os/etc/my.domain.org/ directories ; cus-
tomize host, http host and wwsympa url parameters in the
/usr/local/sympa-os/etc/my.domain.org/robot.conf with the same va-
lues as the default robot (as defined in sympa.conf and wwsympa.conf files).

Chapitre 16

Interaction between Sympa and
other applications

16.1 Soap

See 12, page 111.

16.2 RSS channel

See 11, page 107.

16.3 Sharing WWSympa authentication with other ap-
plications

See 13.6, page 140.

16.4 Sharing data with other applications

You may extract subscribers, owners and editors for a list from any of :
– a text file
– a Relational database

157

158CHAPITRE 16. INTERACTION BETWEEN SYMPA AND OTHER APPLICATIONS

– a LDAP directory
See user data source list parameter 21.2.1, page 204.

The three tables can have more fields than the one used by Sympa, by defining these
additional fields, they will be available from within Sympa’s authorization scenarios
and templates (see 7.10.11, page 74 and 7.10.12, page 74).

See data inclusion file 18.7, page 172.

16.5 Subscriber count

subscriber count

The number of subscribers of a list can be get from an external application by reques-
ting function ’subscriber count’ on the Web interface.

Example: http ://my.server/wws/subscriber count/mylist

Chapitre 17

Customizing Sympa/WWSympa

17.1 Template file format

Template files within Sympa used to be in a proprietary format that has been replaced
with the TT21 template format.

You will find detailed documentation about the TT2 syntax on the web site :
http ://www.tt2.org

Here are some aspects regarding templates that are specific to Sympa :
– References to PO catalogue are noted with the [% loc %] tag that may

include parameters. Example: [%|loc(list.name,list.host)%]Welcome to
list %1%2[%END%].

– Few exceptions apart, templates cannot insert or parse a file given its full or relative
path, for security reason. Only the file name should be provided ; the TT2 parser
will then use the INCLUDE PATH provided by Sympa to find the relevant file to
insert/parse.

– The qencode filter should be used if a template includes SMTP header
fields that should be Q-encoded. Example: [% FILTER qencode %]Message à
modérer[%END%]

– You can write different versions of a template file in different language,
each of them being located in a subdirectory of the tt2 directory. Example:
/mail tt2/fr FR/helpfile.tt2

1http ://www.tt2.org

159

http://www.tt2.org

160 CHAPITRE 17. CUSTOMIZING SYMPA/WWSYMPA

17.2 Site template files

These files are used by Sympa as service messages for the HELP, LISTS and REMIND *
commands. These files are interpreted (parsed) by Sympa and respect the TT2 template
format ; every file has a .tt2 extension. See 17.1, page 159.

Sympa looks for these files in the following order (where <list> is the listname if defi-
ned, <action> is the name of the command, and <lang> is the preferred language of the
user) :

1. /usr/local/sympa-os/expl/<list>/mail tt2/<lang>/<action>.tt2.
2. /usr/local/sympa-os/expl/<list>/mail tt2/<action>.tt2.
3. /usr/local/sympa-os/etc/my.domain.org/mail tt2/<lang>/<action>.tt2.
4. /usr/local/sympa-os/etc/my.domain.org/mail tt2/<action>.tt2.
5. /usr/local/sympa-os/etc/mail tt2/<lang>/<action>.tt2.
6. /usr/local/sympa-os/etc/mail tt2/<action>.tt2.
7. /usr/local/sympa-os/bin/etc/mail tt2/<lang>/<action>.tt2.
8. /usr/local/sympa-os/bin/etc/mail tt2/<action>.tt2.

If the file starts with a From : line, it is considered as a full message and will be sent (af-
ter parsing) without adding SMTP headers. Otherwise the file is treated as a text/plain
message body.

The following variables may be used in these template files :

- [% conf.email %] : sympa e-mail address local part
- [% conf.domain %] : sympa robot domain name
- [% conf.sympa %] : sympa’s complete e-mail address
- [% conf.wwsympa url %] : WWSympa root URL
- [% conf.listmaster %] : listmaster e-mail addresses
- [% user.email %] : user e-mail address
- [% user.gecos %] : user gecos field (usually his/her name)
- [% user.password %] : user password
- [% user.lang %] : user language

17.2.1 helpfile.tt2

This file is sent in response to a HELP command. You may use additional variables
- [% is owner %] : TRUE if the user is list owner
- [% is editor %] : TRUE if the user is list editor

17.2.2 lists.tt2

File returned by LISTS command. An additional variable is available :

17.2. SITE TEMPLATE FILES 161

- [% lists %] : this is a hash table indexed by list names and containing lists’ subjects.
Only lists visible to this user (according to the visibility list parameter) are listed.

Example :

These are the public lists for [conf->email]@[conf->domain]

[% FOREACH l = lists %]
[% l.key %]@[% l.value.host %] : [% l.value.subject %]

[% END %]

17.2.3 global remind.tt2

This file is sent in response to a REMIND * command. (see 28.2, page 258) You may
use additional variables
- [% lists %] : this is an array containing the list names the user is subscribed to.
Example :

This is a subscription reminder.

You are subscribed to the following lists :
[% FOREACH l = lists %]

[% l %] : [% conf.wwsympa_url \%]/info/[% l %]

[% END %]

Your subscriber e-mail : [% user.email %]
Your password : [% user.password %]

17.2.4 your infected msg.tt2

This message is sent to warn the sender of a virus infected mail, indicating the name of
the virus found (see ??, page ??).

162 CHAPITRE 17. CUSTOMIZING SYMPA/WWSYMPA

17.3 Web template files

You may define your own web template files, different from the standard ones. WW-
Sympa first looks for list specific web templates, then for site web templates, before
falling back on its defaults.

Your list web template files should be placed in the
/usr/local/sympa-os/expl/mylist/web tt2 directory ; your site web tem-
plates in ~/usr/local/sympa-os/etc/web tt2 directory.

Note that web colors are defined in Sympa’s main Makefile (see 3.3, page 31).

17.4 Internationalization

Sympa was originally designed as a multilingual Mailing List Manager. Even in its
earliest versions, Sympa separated messages from the code itself, messages being sto-
red in NLS catalogues (according to the XPG4 standard). Later a lang list parameter
was introduced. Nowadays Sympa is able to keep track of individual users’ language
preferences.

If you are willing to provide Sympa into your native language, please check the trans-
lation howto (http ://www.sympa.org/howtotranslate.html) ;

17.4.1 Sympa internationalization

Every message sent by Sympa to users, owners and editors is outside the code, in a
message catalog. These catalogs are located in the /usr/local/sympa-os/locale
directory.

To tell Sympa to use a particular message catalog, you can should set the lang para-
meter in sympa.conf.

17.4.2 List internationalization

The lang list parameter defines the language for a list. It is currently used by WW-
Sympa and to initialize users’ language preferences at subscription time.

In future versions, all messages returned by Sympa concerning a list should be in the
list’s language.

http://www.sympa.org/howtotranslate.html

17.5. TOPICS 163

17.4.3 User internationalization

The user language preference is currently used by WWSympa only. There is no e-mail-
based command for a user to set his/her language. The language preference is initialized
when the user subscribes to his/her first list. WWSympa allows the user to change it.

17.5 Topics

WWSympa’s homepage shows a list of topics for classifying mailing lists. This is dy-
namically generated using the different lists’ topics configuration parameters. A list
may appear in multiple categories (This parameter is different from msg topic used
to tag list messages)

The list of topics is defined in the topics.conf configuration file, located in the
/usr/local/sympa-os/etc directory. The format of this file is as follows :

<topic1_name>
title <topic1 title>
title.fr <topic french title>
visibility <topic1 visibility>
....
<topicn_name/subtopic_name>
title <topicn title>
title.de <topicn german title>

You will notice that subtopics can be used, the separator being /. The topic name is com-
posed of alphanumerics (0-1a-zA-Z) or underscores (). The order in which the topics
are listed is respected in WWSympa’s homepage. The visibility line defines who can
view the topic (now available for subtopics). It refers to the associated topics visibility
authorization scenario. You will find a sample topics.conf in the sample directory ;
NONE is installed as the default.

A default topic is hard-coded in Sympa : default. This default topic contains all lists for
which a topic has not been specified.

17.6 Authorization scenarios

See 14, page 143.

164 CHAPITRE 17. CUSTOMIZING SYMPA/WWSYMPA

17.7 Loop detection

Sympa uses multiple heuristics to avoid loops in Mailing lists

First, it rejects messages coming from a robot (as indicated by the From : and other
header fields), and messages containing commands.

Secondly, every message sent by Sympa includes an X-Loop header field set to the
listname. If the message comes back, Sympa will detect that it has already been sent
(unless X-Loop header fields have been erased).

Thirdly, Sympa keeps track of Message IDs and will refuse to send multiple messages
with the same message ID to the same mailing list.

Finally, Sympa detect loops arising from command reports (i.e. sympa-generated re-
plies to commands). This sort of loop might occur as follows :

1 - X sends a command to Sympa
2 - Sympa sends a command report to X
3 - X has installed a home-made vacation program replying to programs
4 - Sympa processes the reply and sends a report
5 - Looping to step 3

Sympa keeps track (via an internal counter) of reports sent to any particular address.
The loop detection algorithm is :

– Increment the counter
– If we are within the sampling period (as defined by the
loop command sampling delay parameter)
– If the counter exceeds the loop command max parameter, then do not send the

report, and notify the listmaster
– Else, start a new sampling period and reinitialize the counter, i.e. multiply it by

the loop command decrease factor parameter

17.8 Tasks

A task is a sequence of simple actions which realize a complex routine. It is executed
in background by the task manager daemon and allow the list master to automate the
processing of recurrent tasks. For example a task sends every year the subscribers of a
list a message to remind their subscription.

A task is created with a task model. It is a text file which describes a sequence
of simple actions. It may have different versions (for instance reminding subscri-
bers every year or semester). A task model file name has the following format :

17.8. TASKS 165

<model name>.<model version>.task. For instance remind.annual.task or
remind.semestrial.task.

Sympa provides several task models stored in
/usr/local/sympa-os/bin/etc/global task models and
/usr/local/sympa-os/bin/etc/list task models directories. Others can
be designed by the listmaster.

A task is global or related to a list.

17.8.1 List task creation

You define in the list config file the model and the version you want to use (see 21.3.5,
page 213). Then the task manager daemon will automatically create the task by looking
for the appropriate model file in different directories in the following order :

1. /usr/local/sympa-os/expl/<list name>/

2. /usr/local/sympa-os/etc/list task models/

3. /usr/local/sympa-os/bin/etc/list task models/

See also 18.10, page 176, to know more about standard list models provided with
Sympa.

17.8.2 Global task creation

The task manager daemon checks if a version of a global task model is specified in
sympa.conf and then creates a task as soon as it finds the model file by looking in
different directories in the following order :

1. /usr/local/sympa-os/etc/global task models/

2. /usr/local/sympa-os/bin/etc/global task models/

17.8.3 Model file format

Model files are composed of comments, labels, references, variables, date values and
commands. All those syntactical elements are composed of alphanumerics (0-9a-zA-Z)
and underscores ().

– Comment lines begin by ’#’ and are not interpreted by the task manager.
– Label lines begin by ’/’ and are used by the next command (see below).

166 CHAPITRE 17. CUSTOMIZING SYMPA/WWSYMPA

– References are enclosed between brackets ’[]’. They refer to a value depending on
the object of the task (for instance [list->name]). Those variables are instantiated
when a task file is created from a model file. The list of available variables is the
same as for templates (see 18.8, see page 173) plus [creation date] (see below).

– Variables store results of some commands and are paramaters for others. Their name
begins with ’@’.

– A date value may be written in two ways :
– absolute dates follow the format : xxxxYxxMxxDxxHxxMin. Y is the year, M

the month (1-12), D the day (1-28|30|31, leap-years are not managed), H the
hour (0-23), Min the minute (0-59). H and Min are optionnals. For instance,
2001y12m4d44min is the 4th of December 2001 at 00h44.

– relative dates use the [creation date] or [execution date] references. [crea-
tion date] is the date when the task file is created, [execution date] when the
command line is executed. A duration may follow with ’+’ or ’-’ operators. The
duration is expressed like an absolute date whose all parameters are optionnals.
Examples : [creation date], [execution date]+1y, [execution date]-6m4d

– Command arguments are separated by commas and enclosed between parenthesis
’()’.

Here is the list of current avalable commands :
– stop ()

Stops the execution of the task and delete the task file
– next (<date value>, <label>)

Stop the execution. The task will go on at the date value and begin at the label line.
– <@deleted users> = delete subs (<@user selection>)

Delete @user selection email list and stores user emails successfully deleted in @de-
leted users.

– send msg (<@user selection>, <template>)
Send the template message to emails stored in @user selection.

– @user selection = select subs (<condition>)
Store emails which match the condition in @user selection. See 8.6 Authorization
Scenarios section to know how to write conditions. Only available for list models.

– create (global — list (<list name>), <model type>, <model>)
Create a task for object with model file ~model type.model.task.

– chk cert expiration (<template>, <date value>)
Send the template message to emails whose certificate has expired or will expire
before the date value.

– update crl (<file name>, <date value>)
Update certificate revocation lists (CRL) which are expired or will expire before the
date value. The file stores the CRL’s URLs.

– purge orphan bounces()
Clean bounces by removing unsubscribed-users archives.

– eval bouncers()
Evaluate all bouncing users of all list and give them a score from 0 to 100. (0 = no
bounces for this user, 100 is for users who should be removed).

– process bouncers()
Execute actions defined in list configuration on each bouncing users, according to
their score.

Model files may have a scenario-like title line at the beginning.

17.8. TASKS 167

When you change a configuration file by hand, and a task parameter is created or mo-
dified, it is up to you to remove existing task files in the task/ spool if needed. Task
file names have the following format :

<date>.<label>.<model name>.<list name | global> where :

– date is when the task is executed, it is an epoch date
– label states where in the task file the execution begins. If empty, starts at the begin-

ning

17.8.4 Model file examples

– remind.annual.task

– expire.annual.task

– crl update.daily.task

title.gettext daily update of the certificate revocation list

/ACTION
update_crl (CA_list, [execution_date]+1d)
next ([execution_date] + 1d, ACTION)

168 CHAPITRE 17. CUSTOMIZING SYMPA/WWSYMPA

Chapitre 18

Mailing list definition

This chapter describes what a mailing list is made of within Sympa environment.

18.1 Mail aliases

See list aliases section, 18.1, page 169)

18.2 List configuration file

The configuration file for the mylist list is named
/usr/local/sympa-os/expl/my.domain.org/mylist/config (or
/usr/local/sympa-os/expl/mylist/config if no virtual host is defined).
Sympa reloads it into memory whenever this file has changed on disk. The file can
either be edited via the web interface or directly via your favourite text editor.

If you have set the cache list config sympa.conf para-
meter (see 7.9.1, page 71), a binary version of the config
(/usr/local/sympa-os/expl/my.domain.org/mylist/config.bin is maintai-
ned to allow a faster restart of daemons (this is especialy usefull for sites managing
lots of lists).

Be careful to provide read access for Sympa user to this file !

You will find a few configuration files in the sample directory.

List configuration parameters are described in the list creation section, 21, page 199.

169

170 CHAPITRE 18. MAILING LIST DEFINITION

18.3 Examples of configuration files

This first example is for a list open to everyone :

subject First example (an open list)

visibility noconceal

owner
email Pierre.David@prism.uvsq.fr

send public

review public

The second example is for a moderated list with authenticated subscription :

subject Second example (a moderated list)

visibility noconceal

owner
email moi@ici.fr

editor
email big.prof@ailleurs.edu

send editor

subscribe auth

review owner

reply_to_header
value list

cookie 142cleliste

The third example is for a moderated list, with subscription controlled by the owner,
and running in digest mode. Subscribers who are in digest mode receive messages on
Mondays and Thursdays.

owner
email moi@ici.fr

editor

18.4. SUBSCRIBERS FILE 171

email prof@ailleurs.edu

send editor

subscribe owner

review owner

reply_to_header
value list

digest 1,4 12:00

18.4 Subscribers file

Be carefull : Since version 3.3.6 of Sympa, a RDBMS is required for internal data
storage. Flat file should not be use anymore except for testing purpose. Sympa will not
use this file if the list is configured with include or database user data source.

The /usr/local/sympa-os/expl/mylist/subscribers file is automatically crea-
ted and populated. It contains information about list subscribers. It is not advisable to
edit this file. Main parameters are :

– email address
E-mail address of subscriber.

– gecos data
Information about subscriber (last name, first name, etc.) This parameter is optional
at subscription time.

– reception nomail | digest | summary | notice | txt | html | urlize |
not me |
Special receive modes which the subscriber may select. Special modes can be ei-
ther nomail, digest, summary, notice, txt, html, urlize, not me . In normal receive
mode, the receive attribute for a subscriber is not displayed. In this mode subscription
to message topics is available. See the SET LISTNAME SUMMARY (28.1, page 256),
the SET LISTNAME NOMAIL command (28.1, page 257), and the digest parameter
(21.4.9, page 220).

– visibility conceal
Special mode which allows the subscriber to remain invisible when a REVIEW com-
mand is issued for the list. If this parameter is not declared, the subscriber will be
visible for REVIEW. Note : this option does not affect the results of a REVIEW com-
mand issued by an owner. See the SET LISTNAME MAIL command (28.1, page 257)
for details.

172 CHAPITRE 18. MAILING LIST DEFINITION

18.5 Info file

/usr/local/sympa-os/expl/mylist/info should contain a detailed text descrip-
tion of the list, to be displayed by the INFO command. It can also be referenced from
template files for service messages.

18.6 Homepage file

/usr/local/sympa-os/expl/mylist/homepage is the HTML text on the WW-
Sympa info page for the list.

18.7 Data inclusion file

Sympa will use these files only if the list is configured in include2
user data source mode. Every file has the .incl extension. More over, these files
must be declared in paragraphs owner include or editor inlude in the list confi-
guration file without the .incl extension (see 21, page 199). This files can be template
file.

Sympa looks for them in the following order :

1. /usr/local/sympa-os/expl/mylist/data sources/<file>.incl.

2. /usr/local/sympa-os/etc/data sources/<file>.incl.

3. /usr/local/sympa-os/etc/my.domain.org/data sources/<file>.incl.

These files are used by Sympa to load administrative data in a relational database :
Owners or editors are defined intensively (definition of criteria owners or editors must
satisfy). Includes can be performed by extracting e-mail addresses using an SQL or
LDAP query, or by including other mailing lists.

A data inclusion file is composed of paragraphs separated by blank lines and
introduced by a keyword. Valid paragraphs are include file, include list,
include remote sympa list, include sql query and include ldap query.
They are described in the list configuration parameters chapitre, 21, page 199.

When this file is a template, used variables are array elements (param array). This
array is instantiated by values contained in the subparameter source parameter of
owner include or editor inlude.

Example :

– in the list configuration file :

18.8. LIST TEMPLATE FILES 173

owner_include
source myfile
source_parameters mysql,rennes1,stduser,mysecret,studentbody,student

– in myfile.incl :

include_sql_query
db_type [% param.0 %]
host sqlserv.admin.univ-[% param.1 %].fr
user [% param.2 %]
passwd [% param.3 %]

db_name [% param.4 %]
sql_query SELECT DISTINCT email FROM [% param.5 %]

– resulting data inclusion file :

include_sql_query
db_type mysql
host sqlserv.admin.univ-rennes1.fr

user stduser
passwd mysecret
db_name studentbody
sql_query SELECT DISTINCT email FROM student

18.8 List template files

These files are used by Sympa as service messages for commands such as SUB, ADD,
SIG, DEL, REJECT. These files are interpreted (parsed) by Sympa and respect the tem-
plate format ; every file has the .tt2 extension. See 17.1, page 159.

Sympa looks for these files in the following order :

1. /usr/local/sympa-os/expl/mylist/mail tt2/<file>.tt2

2. /usr/local/sympa-os/etc/mail tt2/<file>.tt2.

3. /usr/local/sympa-os/bin/etc/mail tt2/<file>.tt2.

If the file starts with a From : line, it is taken to be a full message and will be sent
(after parsing) without the addition of SMTP headers. Otherwise the file is treated as a
text/plain message body.

The following variables may be used in list template files :

- [% conf.email %] : sympa e-mail address local part
- [% conf.domain %] : sympa robot domain name
- [% conf.sympa %] : sympa’s complete e-mail address
- [% conf.wwsympa url %] : WWSympa root URL

174 CHAPITRE 18. MAILING LIST DEFINITION

- [% conf.listmaster %] : listmaster e-mail addresses
- [% list.name %] : list name
- [% list.host %] : list hostname (default is sympa robot domain name)
- [% list.lang %] : list language
- [% list.subject %] : list subject
- [% list.owner %] : list owners table hash
- [% user.email %] : user e-mail address
- [% user.gecos %] : user gecos field (usually his/her name)
- [% user.password %] : user password
- [% user.lang %] : user language
- [% execution date %] : the date when the scenario is executed

You may also dynamically include a file from a template using the [% INSERT %]
directive.

Example :

Dear [% user.email %],

Welcome to list [% list.name %]@[% list.host %].

Presentation of the list :
[% INSERT ’info’ %]

The owners of [% list.name %] are :
[% FOREACH ow = list.owner %]

[% ow.value.gecos %] <[% ow.value.email %]>
[% END %]

18.8.1 welcome.tt2

Sympa will send a welcome message for every subscription. The welcome message can
be customized for each list.

18.8.2 bye.tt2

Sympa will send a farewell message for each SIGNOFF mail command received.

18.8. LIST TEMPLATE FILES 175

18.8.3 removed.tt2

This message is sent to users who have been deleted (using the DELETE command)
from the list by the list owner.

18.8.4 reject.tt2

Sympa will send a reject message to the senders of messages rejected by the list editor.
If the editor prefixes her REJECT with the keyword QUIET, the reject message will not
be sent.

18.8.5 invite.tt2

This message is sent to users who have been invited (using the INVITE command) to
subscribe to a list.

You may use additional variables
- [% requested by %] : e-mail of the person who sent the INVITE command
- [% url %] : the mailto : URL to subscribe to the list

18.8.6 remind.tt2

This file contains a message sent to each subscriber when one of the list owners sends
the REMIND command (see 28.2, page 258).

18.8.7 summary.tt2

Template for summaries (reception mode close to digest), see 28.1, page 256.

18.8.8 list aliases.tt2

Template that defines list mail alises. It is used by the alias manager script.

176 CHAPITRE 18. MAILING LIST DEFINITION

18.9 Stats file

/usr/local/sympa-os/expl/mylist/stats is a text file containing statistics
about the list. Data are numerics separated by white space within a single line :

– Number of messages sent, used to generate X-sequence headers
– Number of messages X number of recipients
– Number of bytes X number of messages
– Number of bytes X number of messages X number of recipients
– Number of subscribers
– Last update date (epoch format) of the subscribers cache in DB, used by lists in

include2 mode only

18.10 List model files

These files are used by Sympa to create task files. They are interpreted (parsed) by the
task manager and respect the task format. See 17.8, page 164.

18.10.1 remind.annual.task

Every year Sympa will send a message (the template remind.tt2) to all subscribers
of the list to remind them of their subscription.

18.10.2 expire.annual.task

Every month Sympa will delete subscribers older than one year who haven’t answered
two warning messages.

18.11 Message header and footer

You may create /usr/local/sympa-os/expl/mylist/message.header and
/usr/local/sympa-os/expl/mylist/message.footer files. Their content is ad-
ded, respectively at the beginning and at the end of each message before the dis-
tribution process. You may also include the content-type of the appended part
(when footer type list parameter s set to mime) by renaming the files to
message.header.mime and message.footer.mime.

18.11. MESSAGE HEADER AND FOOTER 177

The footer type list parameter defines whether to attach the header/footer content
as a MIME part (except for multipart/alternative messages), or to append them to the
message body (for text/plain messages).

Under certain circumstances, Sympa will NOT add headers/footers, here is its algo-
rythm :

if message is not multipart/signed
if footer_type==append
if message is text/plain
append header/footer to it

else if message is multipart AND first part is text/plain
append header/footer to first part

if footer_type==mime
if message is not multipart/alternative
add header/footer as a new MIME part

18.11.1 Archive directory

The /usr/local/sympa-os/expl/mylist/archives/ directory contains the ar-
chived messages for lists which are archived ; see 21.6.1, page 226. The files are named
in accordance with the archiving frequency defined by the archive parameter.

178 CHAPITRE 18. MAILING LIST DEFINITION

Chapitre 19

List creation, edition and
removal

The list creation can be done by two ways, according to listmaster needs :
– instanciation family to create and manage large number of related lists. In this case,

lists are linked to their family all along their life (Moreover you can let sympa auto-
matically create lists when needed. See 20.3, page 194).

– command line creation of individual list with sympa.pl or on the Web interface
according to privileges defined by listmasters. Here lists are free from their model
creation.

Management of mailing lists by list owners is usually done via the Web interface : when
a list is created, whatever its status (pending or open), the owner can use WWSympa
admin features to modify list parameters, or to edit the welcome message, and so on.

WWSympa keeps logs of the creation and all modifications to a list as part of the
list’s config file (old configuration files are archived). A complete installation requires
some careful planning, although default values should be acceptable for most sites.

19.1 List creation

Mailing lists can have many different uses. Sympa offers a wide choice of parameters
to adapt a list behavior to different situations. Users might have difficulty selecting
all the correct parameters to make the list configuration, so instead of selecting each
parameters, list configuration is made with a list profile. This is an almost complete
list configuration, but with a number of unspecified fields (such as owner e-mail) to
be replaced by Sympa at list creation time. It is easy to create new list templates by
modifying existing ones. (Contributions to the distribution are welcome...)

179

180 CHAPITRE 19. LIST CREATION, EDITION AND REMOVAL

19.1.1 Data for list creation

To create a list, some data concerning list parameters are required :
– listname : name of the list,
– subject : subject of the list (a short description),
– owner(s) : by static definition and/or dynamic definition. In case of static defini-

tion, the parameter owner and its subparameter email are required. For dynamic
definition, the parameter owner include and its subparameter source are required,
indicating source file of data inclusion.

– list creation template : the typical list profile.
Moreover of these required data, provided values are assigned to vars being in the list
creation template. Then the result is the list configuration file :

On the Web interface, these data are given by the list creator in the web form. On
command line these data are given by an xml file.

19.1.2 XML file format

The xml file provides information on :

– the list name,
– values to assign vars in the list creation template
– the list description in order to be written in the list file info
– the name of the list creation template (only for list creation on command line with

sympa.pl, in a family context, the template is specified by the family name)
Here is an example of XML document that you can map with the following example
of list creation template. :

<?xml version="1.0" ?>
<list>
<listname>example</listname>

<type>my_profile</type>
<subject>a list example</subject>
<description/>
<status>open</status>
<shared_edit>editor</shared_edit>
<shared_read>private</shared_read>

<language>fr</language>
<owner multiple="1">

<email>serge.aumont@cru.fr</email>
<gecos>C.R.U.</gecos>

</owner>
<owner multiple="1">

<email>olivier.salaun@cru.fr</email>
</owner>

19.1. LIST CREATION 181

<owner_include multiple="1">
<source>my_file</source>

</owner_include>
<sql>

<type>oracle</type>
<host>sqlserv.admin.univ-x.fr</host>
<user>stdutilisateur</user>
<pwd>monsecret</pwd>
<name>les_etudiants</name>
<query>SELECT DISTINCT email FROM etudiant</query>

</sql>
</list>

subject [% subject %]

status [% status %]

[% IF topic %]
topics [% topic %]

[% END %]
visibility noconceal

send privateoreditorkey

Web_archive
access public

subscribe open_notify

shared_doc
d_edit [% shared_edit %]
d_read [% shared_read %]

lang [% language %]

[% FOREACH o = owner %]
owner
email [% o.email %]
profile privileged
[% IF o.gecos %]
gecos [% o.gecos %]
[% END %]

[% END %]
[% IF moderator %]

[% FOREACH m = moderator %]
editor

182 CHAPITRE 19. LIST CREATION, EDITION AND REMOVAL

email [% m.email %]

[% END %]
[% END %]

[% IF sql %]
include_sql_query
db_type [% sql.type %]
host [% sql.host %]
user [% sql.user %]
passwd [% sql.pwd %]
db_name [% sql.name %]
sql_query [% sql.query %]

[% END %]
ttl 360

The XML file format should comply with the following rules :
– The root element is <list>
– One XML element is mandatory : <listname> contains the name of the

list. That not excludes mandatory parameters for list creation (listname,
subject,owner.email and/or owner include.source).

– <type> : this element contains the name of template list creation, it is used for list
creation on command line with sympa.pl. In a family context, this element is no
used.

– <description> : the text contained in this element is written in list info file(it can
be a CDATA section).

– For other elements, its name is the name of the var to assign in the list creation
template.

– Each element concerning multiple parameters must have the multiple attribute set
to “1”, example : <owner multiple=’’1’’>.

– For composed and multiple parameters, sub-elements are used. Example for owner
parameter : <email> and <gecos> elements are contained in the <owner>element.
An element can only have homogeneous content.

– A list requires at least one owner, defined in the XML input file with one of the
following elements :
– <owner multiple=’’1’’> <email> ... </email> </owner>
– <owner include multiple=’’1’’> <source> ... </source>
</owner include>

19.2 List families

See chapter 20, page 187

19.3. LIST CREATION ON COMMAND LINE WITH SYMPA.PL 183

19.3 List creation on command line with sympa.pl

This way to create lists is independent of family.

Here is a sample command to create one list :.

sympa.pl –create list –robot my.domain.org–input file
/path/to/my file.xml

The list is created under the my robot robot and the list is described in the file
my file.xml. The XML file is described before, see 19.1.2, page 180.

By default, the status of the created list is open.

typical list profile (list template creation)

The list creator has to choose a profile for the list and put its name in the XML element
<type>.

List profiles are stored in /usr/local/sympa-os/etc/create list templates or
in /usr/local/sympa-os/bin/etc/create list templates (default of distrib).

You might want to hide or modify profiles (not useful, or dange-
rous for your site). If a profile exists both in the local site di-
rectory /usr/local/sympa-os/etc/create list templates and
/usr/local/sympa-os/bin/etc/create list templates directory, then
the local profile will be used by WWSympa.

19.4 Creating and editing mailing using the web

The management of mailing lists is based on a strict definition of privileges which
pertain respectively to the listmaster, to the main list owner, and to basic list owners.
The goal is to allow each listmaster to define who can create lists, and which parameters
may be set by owners.

19.4.1 List creation on the Web interface

Listmasters are responsible for validating new mailing lists and, depending on the
configuration chosen, might be the only ones who can fill out the create list form.The
listmaster is defined in sympa.conf and others are defined at the virtual host level. By
default, any authenticated user can request a list creation but newly created are then
validated by the listmaster.

184 CHAPITRE 19. LIST CREATION, EDITION AND REMOVAL

List rejection message and list creation notification message are both templates that
you can customize (list rejected.tt2 and list created.tt2).

19.4.2 Who can create lists on the Web interface

This is defined by the create list sympa.conf parameter (see 7.1.19, page 54). This
parameter refers to a create list authorization scenario. It will determine if the create
list button is displayed and if it requires a listmaster confirmation.

The authorization scenario can accept any condition concerning the [sender] (i.e. WW-
Sympa user), and it returns reject, do it or listmaster as an action.

Only in cases where a user is authorized by the create list authorization scenario will
the ”create” button be available in the main menu. If the scenario returns do it, the list
will be created and installed. If the scenario returns ”listmaster”, the user is allowed to
create a list, but the list is created with the pending status, which means that only the
list owner may view or use it. The listmaster will need to open the list of pending lists
using the ”pending list” button in the ”server admin” menu in order to install or refuse
a pending list.

19.4.3 typical list profile and Web interface

As on command line creation, the list creator has to choose a list profile and to fill in the
owner’s e-mail and the list subject together with a short description. But in this case,
you don’t need any XML file. Concerning these typical list profiles, they are described
before, see 19.3, page 183. You can check available profile. On the Web interface,
another way to control publicly available profiles is to edit the create list.conf file
(the default for this file is in the /usr/local/sympa-os/bin/etc directory, and you
may create your own customized version in /usr/local/sympa-os/etc). This file
controls which of the available list templates are to be displayed. Example :

Do not allow the public_anonymous profile
public_anonymous hidden
* read

19.4.4 List edition

For each parameter, you may specify (via the
/usr/local/sympa-os/etc/edit list.conf configuration file)
who has the right to edit the parameter concerned ; the default
/usr/local/sympa-os/bin/etc/edit list.conf is reasonably safe.

Each line is a set of 3 field

19.4. CREATING AND EDITING MAILING USING THE WEB 185

<Parameter> <Population> <Privilege>
<Population> : <listmaster|privileged_owner|owner>
<Privilege> : <write|read|hidden>
parameter named "default" means any other parameter

There is no hierarchical relation between populations in this configuration file. You
need to explicitely list populations.

Eg : listmaster will not match rules refering to owner or privileged owner

examples :

only listmaster can edit user_data_source, priority, ...
user_data_source listmaster write

priority owner,privileged_owner read
priority listmaster write

only privileged owner can modify editor parameter, send, ...
editor privileged_owner write

send owner read
send privileged_owner,listmaster write

other parameters can be changed by simple owners
default owner write

Privileged owners are defined in the list’s config file as follows :

owner
email owners.email@foo.bar
profile privileged

The following rules are hard coded in WWSympa :
– only listmaster can edit the ”profile privileged” owner attribute
– owners can edit their own attributes (except profile and e-mail)
– the requestor creating a new list becomes a privileged owner
– privileged owners can edit any gecos/reception/info attribute of any owner
– privileged owners can edit owners’ e-mail addresses (but not privileged owners’ e-

mail addresses)
Sympa aims to define two levels of trust for owners (some being entitled simply to
edit secondary parameters such as ”custom subject”, others having the right to ma-
nage more important parameters), while leaving control of crucial parameters (such
as the list of privileged owners and user data sources) in the hands of the listmaster.
Consequently, privileged owners can change owners’ e-mails, but they cannot grant the
responsibility of list management to others without referring to the listmaster.

Concerning list edition in a family context, see 20.2.8, page 194

186 CHAPITRE 19. LIST CREATION, EDITION AND REMOVAL

19.5 Removing a list

You can remove a list either from the command line or using the web interface.

sympa.pl provides an option to remove a mailing list, see the example below :

sympa.pl –remove list=mylist@mydomain

Privileged owners can remove a mailing list through the list admin part of the web
interface. Removing the mailing list consists in removing its subscribers from the da-
tabase and setting its status to closed.Once removed, the list can still be restored by the
listmaster ; list members are saved in a subscribers.closed.dump file.

Chapitre 20

Lists Families

A list can have from three parameters to many tens of them. Some listmasters need to
create a set of lists that have the same profile. In order to simplify the apprehension
of these parameters, list families define a lists typology. Families provide a new level
for defaults : in the past, defaults in Sympa were global and most sites using Sympa
needed multiple defaults for different group of lists. Moreover families allow listmaster
to delegate a part of configuration list to owners, in a controlled way according to family
properties. Distribution will provide defaults families.

20.1 Family concept

A family provides a model for all of its lists. It is specified by the following characte-
ristics :

– a list creation template providing a common profile for each list configuration file.
– an degree of independence between the lists and the family : list parameters edition

rights and constraints on these parameters can be free (no constraint), controlled (a
set of available values is defined for these parameters) or fixed (the value for the
parameter is imposed by the family). That prevents lists from diverging from the
original and it allows list owner customizations in a controlled way.

– a filiation kept between lists and family all along the list life : family modifications
are applied on lists while keeping listowners customizations.

Here is a list of operation performed on a family :

– definition : definition of the list creation template, the degree of independence and
family customizations.

– instantiation : lists creation or modifications of existing lists while respecting family
properties. The set of data defining the lists is an XML document.

187

188 CHAPITRE 20. LISTS FAMILIES

– modification : modification of family properties. The modification is effective at the
next instantiation time, that have consequences on every list.

– closure : closure of each list.
– adding one list to a family.
– closing one family list.
– modifying one family list.

20.2 Using family

20.2.1 Definition

Families can be defined at the robot level, at the site level or on the distribution level
(where default families are provided). So, you have to create a sub directory named
after the family’s name in a families directory :

Examples :

/home/sympa/etc/families/my_family
/home/sympa/etc/my_robot/families/my_family

In this directory you must provide these files :
– config.tt2 (mandatory)
– param constraint.conf (mandatory)
– edit list.conf
– customizable files

config.tt2

This is a list creation template, this file is mandatory. It provides default values for
parameters. This file is an almost complete list configuration, with a number of missing
fields (such as owner e-mail) to be replaced by data obtained at the time of family
instantiation. It is easy to create new list templates by modifying existing ones. See
18.8, page 173 and 17.1, page 159.

Example :

subject [% subject %]

status [% status %]

[% IF topic %]
topics [% topic %]

[% END %]

20.2. USING FAMILY 189

visibility noconceal

send privateoreditorkey

web_archive
access public

subscribe open_notify

shared_doc
d_edit [% shared_edit %]
d_read [% shared_read %]

lang [% language %]

[% FOREACH o = owner %]
owner
email [% o.email %]
profile privileged
[% IF o.gecos %]
gecos [% o.gecos %]
[% END %]

[% END %]
[% IF moderator %]

[% FOREACH m = moderator %]
editor
email [% m.email %]

[% END %]
[% END %]

[% IF sql %]
include_sql_query
db_type [% sql.type %]
host [% sql.host %]
user [% sql.user %]
passwd [% sql.pwd %]
db_name [% sql.name %]
sql_query [% sql.query %]

[% END %]
ttl 360

190 CHAPITRE 20. LISTS FAMILIES

param constraint.conf

This file is obligatory. It defines constraints on parameters. There are three kind of
constraints :
– free parameters : no constraint on these parameters, they are not written in the
param constraint.conf file.

– controlled parameters : these parameters must select their values in a set of available
values indicated in the param constraint.conf file.

– fixed parameters : these parameters must have the imposed value indicated in the
param constraint.conf file.

The parameters constraints will be checked at every list loading.

WARNING : Some parameters cannot be constrained, they are :
msg topic.keywords (see 21.4.13, page 221),owner include.source parameter
(see 21.1.6, page 202), editor include.source parameter (see 21.1.2, page 200).
About digest parameter (see 21.4.9, page 220) , just days can be constrained.

Example :
lang fr,us
archive.period days,week,month
visibility conceal,noconceal
shared_doc.d_read public
shared_doc.d_edit editor

edit list.conf

This is an optional file. It defines which parameters/files are editable by owners. See
19.4.4, page 184. If the family does not have this file, Sympa will look for the one
defined on robot level, server site level or distribution level. (This file already exists
without family context)
Notes that by default parameter family name is not writable, you should not change
this edition right.

customizable files

Families provides a new level of customization for scenarios (see 14, page 143), tem-
plates for service messages (see 17.2, page 160) and templates for web pages (see 17.3
, page 162). Sympa looks for these files in the following level order : list, family, robot,
server site or distribution.

Example of custom hierarchy :
/usr/local/sympa-os/etc/families/myfamily/mail_tt2/
/usr/local/sympa-os/etc/families/myfamily/mail_tt2/bye.tt2
/usr/local/sympa-os/etc/families/myfamily/mail_tt2/welcome.tt2

20.2. USING FAMILY 191

20.2.2 Instantiation

Instantiation permits to generate lists.You must provide an XML file that is composed
of lists description, the root element is family and is only composed of list elements.
List elements are described in section 19.1.2, page 180. Each list is described by the
set of values for affectation list parameters.

Here is an sample command to instantiate a family :

sympa.pl --instantiate_family my_family --robot \samplerobot --input_file /path/to/my_file.xml

This means lists that belong to family my family will be created under the robot
my robot and these lists are described in the file my file.xml. Sympa will split this
file into several xml files describing lists. Each list XML file is put in each list directory.

Example :

<?xml version="1.0" ?>
<family>
<list>
<listname>liste1</listname>
<subject>a list example</subject>
<description/>
<status>open</status>
<shared_edit>editor</shared_edit>
<shared_read>private</shared_read>
<language>fr</language>
<owner multiple="1">
<email>serge.aumont@cru.fr</email>
<gecos>C.R.U.</gecos>

</owner>
<owner multiple="1">
<email>olivier.salaun@cru.fr</email>

</owner>
<owner_include multiple="1">
<source>my_file</source>

</owner_include>
<sql>
<type>oracle</type>
<host>sqlserv.admin.univ-x.fr</host>
<user>stdutilisateur</user>
<pwd>monsecret</pwd>
<name>les_etudiants</name>
<query>SELECT DISTINCT email FROM etudiant</query>

</sql>
</list>
<list>
<listname>liste2</listname>
<subject>a list example</subject>
<description/>

192 CHAPITRE 20. LISTS FAMILIES

<status>open</status>
<shared_edit>editor</shared_edit>
<shared_read>private</shared_read>
<language>fr</language>
<owner multiple="1">
<email>serge.aumont@cru.fr</email>
<gecos>C.R.U.</gecos>

</owner>
<owner multiple="1">
<email>olivier.salaun@cru.fr</email>

</owner>
<owner_include multiple="1">
<source>my_file</source>

</owner_include>
<sql>
<type>oracle</type>
<host>sqlserv.admin.univ-x.fr</host>
<user>stdutilisateur</user>
<pwd>monsecret</pwd>
<name>les_etudiants</name>
<query>SELECT DISTINCT email FROM etudiant</query>

</sql>
</list>
...

</family>

Each instantiation describes lists. Compared to the previous instantiation, there are
three cases :
– lists creation : new lists described by the new instantiation
– lists modification : lists already existing but possibly changed because of changed

parameters values in the XML file or because of changed family’s properties.
– lists removal : lists nomore described by the new instantiation. In this case, the list-

master must valid his choice on command line. If the list is removed, it is set in status
family closed, or if the list is recovered, the list XML file from the previous ins-
tantiation is got back to go on as a list modification then.

After list creation or modification, parameters constraints are checked :
– fixed parameter : the value must be the one imposed.
– controlled parameter : the value must be one of the set of available values.
– free parameter : there is no checking.
diagram

In case of modification (see diagram), allowed customizations can be preserved :
– (1) : for every modified parameters (via Web interface), noted in the
config changes file, values can be collected in the old list configuration file, ac-
cording to new family properties :
– fixed parameter : the value is not collected.
– controlled parameter : the value is collected only if constraints are respected.
– free parameter : the value is collected.

– (2) : a new list configuration file is made with the new family properties
– (3) : collected values are set in the new list configuration file.

20.2. USING FAMILY 193

Notes :
– For each list problem (as family file error, error parameter constraint, error instan-

ciation ...), the list is set in status error config and the listmaster is notified. He
will have to do necessary to put list in use.

– For each list closing in family context, the list is set in status family closed and
the owner is notified.

– For each overwritten list customization, the owner is notified.

20.2.3 Modification

To modify a family, you have to edit family files manually. The modification will be
effective while the next instanciation.
WARNING : The family modification must be done just before an instantiation. If it is
not, alive lists wouldn’t respect new family properties and they would be set in status
error config immediately.

20.2.4 Closure

Closes every list (installed under the indicated robot) of this family : lists status are
set to family closed, aliases are removed and subscribers are removed from DB. (a
dump is created in the list directory to allow restoration of the list).

Here is a sample command to close a family :

sympa.pl --close_family my_family --robot \samplerobot

20.2.5 Adding one list

Adds a list to the family without instantiate all the family. The list is created as if it
was created during an instantiation, under the indicated robot. The XML file describes
the list and the root element is <list>. List elements are described in section 19.3,
page 183.

Here is a sample command to add a list to a family :

sympa.pl --add_list my_family --robot \samplerobot --input_file /path/to/my_file.xml

194 CHAPITRE 20. LISTS FAMILIES

20.2.6 Removing one list

Closes the list installed under the indicated robot : the list status is set to
family closed, aliases are removed and subscribers are removed from DB. (a dump
is created in the list directory to allow restoring the list).

Here is a sample command to close a list family (same as an orphan list) :

sympa.pl --close_list my_list@\samplerobot

20.2.7 Modifying one list

Modifies a family list without instantiating the whole family. The list (installed under
the indicated robot) is modified as if it was modified during an instantiation. The XML
file describes the list and the root element is <list>. List elements are described in
section 19.3, page 183.

Here is a sample command to modify a list to a family :

sympa.pl --modify_list my_family --robot \samplerobot --input_file /path/to/my_file.xml

20.2.8 List parameters edition in a family context

According to file edit list.conf, edition rights are controlled. See 19.4.4, page 184.
But in a family context, constraints parameters are added to edition right as it is sum-
marized in this array :

array

Note : In order to preserve list customization for instantiation, every modified parame-
ter (via the Web interface) is noted in the config changes file.

20.3 Automatic list creation

You can benefit from the family concept to let Sympa automatically create lists for
you. Let us suppose that you want to open a list according to specified criteria (age,
geographical site...) within your organization. Maybe that would result in too many
lists, and many of them would never be used.

20.3. AUTOMATIC LIST CREATION 195

Automatic list creation allows you to define those potential lists through family para-
meters, but they won’t be created yet. The mailing list creation is trigerred when Sympa
receives a message addressed to this list.

To enable automatic list creation you’ll have to :
– Configure your MTA to queue messages for these lists in an appropriate spool
– Define a family associated to such lists
– Configure Sympa to enable the feature

20.3.1 Configuring your MTA

To do so, we have to configure our MTA for it to add a custom header field to the
message. The easiest way is to customize your aliases manager, so mails for automatic
lists aren’t delivered to the normal queue program, but to the familyqueue dedicated
one. For example, you can decide that the name of those lists will start with the auto-
pattern, so you can process them separately from other lists you are hosting.

familyqueue expects 2 arguments : the list name and the family name (whereas the
queue program only expects the list address).

Let’s start with a use case : we need to communicate to groups of co-workers, depen-
ding on their age and their occupation. We decide that, for example, if I need to write to
all CTOs who are fifty years old, I will use the auto-cto.50@lists.domain.com mailing
list. The occupation and age informations are stored in our ldap directory (but of course
we could use any Sympa data source : sql, files...). We will create the age-occupation
family.

First of all we configure our MTA to deliver mail to ’auto-*’ to familyqueue for
the age-occupation family.

/etc/postfix/main.cf
...
transport_maps = regexp:/etc/postfix/transport_regexp

/etc/postfix/transport_regexp
/^.*+owner\@lists\.domain\.com$/ sympabounce:
/^auto-.*\@lists\.domain\.com$/ sympafamily:
/^.*\@lists\.domain\.com$/ sympa:

/etc/postfix/master.cf
sympa unix - n n - - pipe
flags=R user=sympa argv=/usr/local/sympa-os/bin/queue ${recipient}

sympabounce unix - n n - - pipe
flags=R user=sympa argv=/usr/local/sympa-os/bin/bouncequeue ${user}

sympafamily unix - n n - - pipe
flags=R user=sympa argv=/usr/local/sympa-os/bin/familyqueue ${user} age-occupation

196 CHAPITRE 20. LISTS FAMILIES

A mail addressed to auto-cto.50@lists.domain.com will be queued to the
/usr/local/sympa-os/spool/automatic spool, defined by the queueautomatic
sympa.conf parameter (see 7.6.11, page 63). The mail will first be processed by an
instance of sympa.pl process dedicated to automatic list creation, then the mail will
be sent to the newly created mailing list.

20.3.2 Defining the list family

We need to create the appropriate etc/families/age-occupation/config.tt2.
All the magic comes from the TT2 language capabilities. We define on-the-fly the
LDAP source, thanks to TT2 macros.

/home/sympa/etc/families/age-occupation/config.tt2
...
user_data_source include2

[%
occupations = {

cto = { title=>"chief technical officer", abbr=>"CHIEF TECH OFF" },
coo = { title=>"chief operating officer", abbr=>"CHIEF OPER OFF" },
cio = { title=>"chief information officer", abbr=>"CHIEF INFO OFF" },

}
nemes = listname.split(’-’);
THROW autofamily "SYNTAX ERROR : listname must begin with ’auto-’ " IF (nemes.size != 2 || nemes.0 != ’auto’);
tokens = nemes.1.split(’\.’);
THROW autofamily "SYNTAX ERROR : wrong listname syntax" IF (tokens.size != 2 || ! occupations.${tokens.0} || tokens.1 < 20 || tokens.1 > 99);
age = tokens.1 div 10;
%]

custom_subject [[% occupations.${tokens.0}.abbr %] OF [% tokens.1 %]]

subject Every [% tokens.1 %] years old [% occupations.${tokens.0}.title %]

include_ldap_query
attrs mail
filter (&(objectClass=inetOrgPerson)(employeeType=[% occupations.${tokens.0}.abbr %])(personAge=[% age %]*))
name ldap
port 389
host ldap.domain.com
passwd ldap_passwd
suffix dc=domain,dc=com
timeout 30
user cn=root,dc=domain,dc=com
scope sub
select all

20.3. AUTOMATIC LIST CREATION 197

The main variable you get is the name of the current mailing list via the listname
variable as used in the example above.

20.3.3 Configuring Sympa

Now we need to enable automatic list creation in Sympa. To do so, we have to
– set the automatic list feature parameter to on and define who can create auto-

matic lists via the automatic list creation (points to an automatic list creation
scenario).

– set the queueautomatic sympa.conf parameter to the spool location where
we want these messages to be stored (it has to be different from the
/usr/local/sympa-os/spool/msg spool).

You can make Sympa delete automatic lists that were created with zero list members ;
to do so you shoukd set the automatic list removal parameter to if empty.

/home/sympa/etc/sympa.conf
...
automatic_list_feature on
automatic_list_creation public
queueautomatic /usr/local/sympa-os/spool/automatic
automatic_list_removal if_empty

While writing your own automatic list creation scenarios, be aware that :
– when the scenario is evaluated, the list is not yet created ; therefore you can’t use the

list-related variables.
– You can only use ’smtp’ and ’smime’ authentication method in scenario rules (You

cannot request the md5 challenge). Moreover only do it and reject actions are
available.

Now you can send message to auto-cio.40 or auto-cto.50, and the lists will be created
on the fly.

You will receive an ’unknown list’ error if either the syntax is incorrect or the number
of subscriber is zero.

198 CHAPITRE 20. LISTS FAMILIES

Chapitre 21

List configuration parameters

The configuration file is composed of paragraphs separated by blank lines and introdu-
ced by a keyword.

Even though there are a very large number of possible parameters, the minimal list
definition is very short. The only required parameters are owner (or owner include)
and subject. All other parameters have a default value.

keyword value

WARNING : configuration parameters must be separated by blank lines and BLANK
LINES ONLY !

21.1 List description

21.1.1 editor

The config file contains one editor paragraph per moderator (or editor). It concerns
static editor definition. For dynamic definition and more information about editors
see 21.1.2, page 200.

Example :

editor
email Pierre.David@prism.uvsq.fr
gecos Pierre (Universite de Versailles St Quentin)

199

200 CHAPITRE 21. LIST CONFIGURATION PARAMETERS

Only the editor of a list is authorized to send messages to the list when the send para-
meter (see 21.3.8, page 214) is set to either editor, editorkey, or editorkeyonly.
The editor parameter is also consulted in certain other cases (privateoreditorkey
).

The syntax of this directive is the same as that of the owner parameter (see 21.1.5,
page 201), even when several moderators are defined.

21.1.2 editor include

The config file contains one editor include paragraph per data inclusion file
(see 18.7, page 172). It concerns dynamic editor definition : inclusion of external
data. For static editor definition and more information about moderation see 21.1.1,
page 199.

Example :

editor_include
reception mail
source myfile
source_parameters a,b,c

The syntax of this directive is the same as that of the owner include parameter
(see 21.1.6, page 202), even when several moderators are defined.

21.1.3 host

(Default value: domain robot parameter)

host fully-qualified-domain-name

Domain name of the list, default is the robot domain name set in the related
robot.conf file or in file /usr/local/sympa-os/etc/sympa.conf.

21.1.4 lang

(Default value: lang robot parameter)

Example :

lang en_US

21.1. LIST DESCRIPTION 201

This parameter defines the language used for the list. It is used to initialize a user’s lan-
guage preference ; Sympa command reports are extracted from the associated message
catalog.

See 17.4, page 162 for available languages.

21.1.5 owner

The config file contains one owner paragraph per owner. It concerns static owner
definition. For dynamic definition see 21.1.6, page 202.

Example :

owner
email serge.aumont@cru.fr
gecos C.R.U.
info Tel: 02 99 76 45 34
reception nomail

The list owner is usually the person who has the authorization to send ADD (see 28.2,
page 258) and DELETE (see 28.2, page 258) commands on behalf of other users.

When the subscribe parameter (see 21.3.1, page 211) specifies a restricted list, it is
the owner who has the exclusive right to subscribe users, and it is therefore to the owner
that SUBSCRIBE requests will be forwarded.

There may be several owners of a single list ; in this case, each owner is declared in a
paragraph starting with the owner keyword.

The owner directive is followed by one or several lines giving details regarding the
owner’s characteristics :

– email address
Owner’s e-mail address

– reception nomail
Optional attribute for an owner who does not wish to receive mails. Useful to de-
fine an owner with multiple e-mail addresses : they are all recognized when Sympa
receives mail, but thanks to reception nomail, not all of these addresses need
receive administrative mail from Sympa.

– gecos data
Public information on the owner

– info data
Available since release 2.3
Private information on the owner

– profile privileged | normal

202 CHAPITRE 21. LIST CONFIGURATION PARAMETERS

Available since release 2.3.5
Profile of the owner. This is currently used to restrict access to some features of
WWSympa, such as adding new owners to a list.

21.1.6 owner include

The config file contains one owner include paragraph per data inclusion file
(see 18.7, page 172. It concerns dynamic owner definition : inclusion of external data.
For static owner definition and more information about owners see 21.1.5, page 201.

Example :

owner_include
source myfile
source_parameters a,b,c
reception nomail
profile normal

The owner include directive is followed by one or several lines giving details regar-
ding the owner(s) included characteristics :

– source myfile
This is an mandatory field : it indicates the data inclusion file myfile.incl. This file
can be a template. In this case, it will be interpreted with values given by subpa-
rameter source parameter. Note that the source parameter should NOT include
the .incl file extension ; the myfile.incl file should be located in the data sources
directory.

– source parameters a,b,c
It contains values enumeration that will be affected to the param array used in the
template file (see 18.7, page 172). This parameter is uncompellable.

– reception nomail
Optional attribute for owner(s) who does not wish to receive mails.

– profile privileged | normal
Profile of the owner(s).

21.1.7 subject

subject subject-of-the-list

This parameter indicates the subject of the list, which is sent in response to the LISTS
mail command. The subject is a free form text limited to one line.

21.2. DATA SOURCE RELATED 203

21.1.8 topics

topics computing/internet,education/university

This parameter allows the classification of lists. You may define multiple topics as well
as hierarchical ones. WWSympa’s list of public lists uses this parameter. This parameter
is different from (msg topic) parameter used to tag mails.

21.1.9 visibility

(Default value: conceal)

visibility parameter is defined by an authorization scenario (see 14, page 143)

This parameter indicates whether the list should feature in the output generated in res-
ponse to a LISTS command.

– visibility conceal

– visibility intranet

– visibility noconceal

– visibility secret

21.2 Data source related

21.2.1 user data source

(Default value: file|database, if using an RDBMS)

user data source file | database | include | include2

Sympa allows the mailing list manager to choose how Sympa loads subscriber and
administartive data. User information can be stored in a text file or relational database,
or included from various external sources (list, flat file, result of LDAP or SQL query).

– user data source file
When this value is used, subscriber data are stored in a file whose name is defined
by the subscribers parameter in sympa.conf. This is maintained for backward

204 CHAPITRE 21. LIST CONFIGURATION PARAMETERS

compatibility.
– user data source database

This mode was been introduced to enable data to be stored in a relational database.
This can be used for instance to share subscriber data with an HTTP interface, or
simply to facilitate the administration of very large mailing lists. It has been tested
with MySQL, using a list of 200 000 subscribers. We strongly recommend the use
of a database in place of text files. It will improve performance, and solve possible
conflicts between Sympa and WWSympa. Please refer to the ¨Sympaand its data-
bases̈ection (8, page 79).

– user data source include
Here, subscribers are not defined extensively (enumeration of their e-mail addresses)
but intensively (definition of criteria subscribers must satisfy). Includes can be per-
formed by extracting e-mail addresses using an SQL or LDAP query, or by inclu-
ding other mailing lists. At least one include paragraph, defining a data source, is
needed. Valid include paragraphs (see below) are include file, include list,
include remote sympa list, include sql query and include ldap query.

– user data source include2
This is a replacement for the include mode. In this mode, the members cache is no
more maitained in a DB FIle but in the main database instead. The behavior of the
cache is detailed in the database chapter (see 8.6, page 91). This is the only mode
that run the database for administrative data in the database

21.2.2 ttl

(Default value: 3600)

ttl delay in seconds

Sympa caches user data extracted using the include parameter. Their TTL (time-to-live)
within Sympa can be controlled using this parameter. The default value is 3600.

21.2.3 include list

include list listname

This parameter will be interpreted only if user data source is set to include or
include2. All subscribers of list listname become members of the current list. You
may include as many lists as required, using one include list listname line for
each included list. Any list at all may be included ; the user data source definition
of the included list is irrelevant, and you may therefore include lists which are also
defined by the inclusion of other lists. Be careful, however, not to include list A in list
B and then list B in list A, since this will give rise an infinite loop.

Example: include list local-list

21.2. DATA SOURCE RELATED 205

Example: include list other-local-list@other-local-robot

21.2.4 include remote sympa list

include remote sympa list

Sympa can contact another Sympa service using https to fetch a remote list in order to
include each member of a remote list as subscriber. You may include as many lists as
required, using one include remote sympa list paragraph for each included list.
Be careful, however, not to give rise an infinite loop making cross includes.

For this operation, one Sympa site act as a server while the other one act as client. On
the server side, the only setting needed is to give permition to the remote Sympa to
review the list. This is controled by the review authorization scenario.

From the client side you must define the remote list dump URI.

– remote host remote host name
– port port (Default 443)
– path absolute path (In most cases, for a list name foo /sympa/dump/foo)

Because https offert a easy and secure client authentication, https is the only one proto-
cole currently supported. A additional parameter is needed : the name of the certificate
(and the private key) to be used :

– cert list the certificate to be use is the list certificate (the certificate subject distin-
guished name email is the list adress). Certificate and private key are located in the
list directory.

– cert robot the certificate used is then related to sympa itself : the certificate sub-
ject distinguished name email look like sympa@my.domain and files are located in
virtual host etc dir if virtual host is used otherwise in /usr/local/sympa-os/etc.

21.2.5 include sql query

include sql query

This parameter will be interpreted only if the user data source value is set to
include, and is used to begin a paragraph defining the SQL query parameters :

– db type dbd name
The database type (mysql, SQLite, Pg, Oracle, Sybase, CSV ...). This value identifies
the PERL DataBase Driver (DBD) to be used, and is therefore case-sensitive.

– host hostname
The Database Server Sympa will try to connect to.

206 CHAPITRE 21. LIST CONFIGURATION PARAMETERS

– db port port
If not using the default RDBMS port, you can specify it.

– db name sympa db name
The hostname of the database system.

– user user id
The user id to be used when connecting to the database.

– passwd some secret
The user passwd for user.

– sql query a query string The SQL query string. No fields other than e-mail ad-
dresses should be returned by this query !

– connect options option1=x ;option2=y
This parameter is optional and specific to each RDBMS.
These options are appended to the connect string.
Example :

include_sql_query
db_type mysql
host sqlserv.admin.univ-x.fr
user stduser
passwd mysecret
db_name studentbody
sql_query SELECT DISTINCT email FROM student
connect_options mysql_connect_timeout=5

Connexion timeout is set to 5 seconds.
– db env list of var def

This parameter is optional ; it is needed for some RDBMS (Oracle).
Sets a list of environment variables to set before database connexion. This is a ’ ;’
separated list of variable assignment.
Example for Oracle :

db_env ORACLE_TERM=vt100;ORACLE_HOME=/var/hote/oracle/7.3.4

– name short name
This parameter is optional.
It provides a human-readable name to this datasource. It will be used within the
REVIEW page to indicate what datasource each list member comes from (usefull
when having multiple data sources).

– f dir /var/csvdir
This parameter is optional, only used when accessing a CSV datasource.
When connecting to a CSV datasource, this parameter indicates the directory where
the CSV files are located.

Example :

include_sql_query
db_type oracle
host sqlserv.admin.univ-x.fr
user stduser
passwd mysecret

21.2. DATA SOURCE RELATED 207

db_name studentbody
sql_query SELECT DISTINCT email FROM student

21.2.6 include ldap query

include ldap query

This paragraph defines parameters for a LDAP query returning a list of subscribers.
This paragraph is used only if user data source is set to include. This feature
requires the Net : :LDAP (perlldap) PERL module.

– host ldap directory hostname
Name of the LDAP directory host or a comma separated list of host :port. The second
form is usefull if you are using some replication ldap host.
Example :

host ldap.cru.fr:389,backup-ldap.cru.fr:389

– port ldap directory port (OBSOLETE)
Port on which the Directory accepts connections.

– user ldap user name
Username with read access to the LDAP directory.

– passwd LDAP user password
Password for user.

– use ssl yes—no
If set to yes, LDAPS protocol is used.

– ssl version sslv2—sslv3—tls (Default value: sslv3)
If using SSL, this parameter define if SSL or TLS is used.

– ssl version ciphers used (Default value: ALL)
If using SSL, this parameter specifies which subset of cipher suites are permissible
for this connection, using the standard OpenSSL string format. The default value of
Net : :LDAPS for ciphers is ALL, which permits all ciphers, even those that don’t
encrypt !

– suffix directory name
Defines the naming space covered by the search (optional, depending on the LDAP
server).

– timeout delay in seconds
Timeout when connecting the remote server.

– filter search filter
Defines the LDAP search filter (RFC 2254 compliant).

– attrs mail attribute (Default value: mail)
The attribute containing the e-mail address(es) in the returned object.

– select first | all (Default value: first)
Defines whether to use only the first address, or all the addresses, in cases where
multiple values are returned.

– scope base | one | sub (Default value: sub)

208 CHAPITRE 21. LIST CONFIGURATION PARAMETERS

By default the search is performed on the whole tree below the specified base object.
This may be changed by specifying a scope parameter with one of the following
values.
– base : Search only the base object.
– one : Search the entries immediately below the base object.
– sub : Search the whole tree below the base object.

Example :

include_ldap_query
host ldap.cru.fr
suffix dc=cru, dc=fr
timeout 10
filter (&(cn=aumont) (c=fr))
attrs mail
select first
scope one

21.2.7 include ldap 2level query

include ldap 2level query

This paragraph defines parameters for a two-level LDAP query returning a list of
subscribers. Usually the first-level query returns a list of DNs and the second-
level queries convert the DNs into e-mail addresses. This paragraph is used only if
user data source is set to include. This feature requires the Net : :LDAP (perll-
dap) PERL module.

– host ldap directory hostname
Name of the LDAP directory host or a comma separated list of host :port. The second
form is usefull if you are using some replication ldap host.
Example :

host ldap.cru.fr:389,backup-ldap.cru.fr:389

– port ldap directory port (OBSOLETE)
Port on which the Directory accepts connections (this parameter is ignored if host
definition include port specification).

– user ldap user name
Username with read access to the LDAP directory.

– passwd LDAP user password
Password for user.

– use ssl yes—no
If set to yes, LDAPS protocol is used.

21.2. DATA SOURCE RELATED 209

– ssl version sslv2—sslv3—tls (Default value: sslv3)
If using SSL, this parameter define if SSL or TLS is used.

– ssl version ciphers used (Default value: ALL)
If using SSL, this parameter specifies which subset of cipher suites are permissible
for this connection, using the standard OpenSSL string format. The default value of
Net : :LDAPS for ciphers is ALL, which permits all ciphers, even those that don’t
encrypt !

– suffix1 directory name
Defines the naming space covered by the first-level search (optional, depending on
the LDAP server).

– timeout1 delay in seconds
Timeout for the first-level query when connecting to the remote server.

– filter1 search filter
Defines the LDAP search filter for the first-level query (RFC 2254 compliant).

– attrs1 attribute
The attribute containing the data in the returned object that will be used for the
second-level query. This data is referenced using the syntax “[attrs1]”.

– select1 first | all | regex (Default value: first)
Defines whether to use only the first attribute value, all the values, or only those
values matching a regular expression.

– regex1 regular expression (Default value:)
The Perl regular expression to use if “select1” is set to “regex”.

– scope1 base | one | sub (Default value: sub)
By default the first-level search is performed on the whole tree below the specified
base object. This may be changed by specifying a scope parameter with one of the
following values.
– base : Search only the base object.
– one : Search the entries immediately below the base object.
– sub : Search the whole tree below the base object.

– suffix2 directory name
Defines the naming space covered by the second-level search (optional, depending
on the LDAP server). The “[attrs1]” syntax may be used to substitute data from the
first-level query into this parameter.

– timeout2 delay in seconds
Timeout for the second-level queries when connecting to the remote server.

– filter2 search filter
Defines the LDAP search filter for the second-level queries (RFC 2254 compliant).
The “[attrs1]” syntax may be used to substitute data from the first-level query into
this parameter.

– attrs2 mail attribute (Default value: mail)
The attribute containing the e-mail address(es) in the returned objects from the
second-level queries.

– select2 first | all | regex (Default value: first)
Defines whether to use only the first address, all the addresses, or only those ad-
dresses matching a regular expression in the second-level queries.

– regex2 regular expression (Default value:)
The Perl regular expression to use if “select2” is set to “regex”.

– scope2 base | one | sub (Default value: sub)
By default the second-level search is performed on the whole tree below the specified
base object. This may be changed by specifying a scope2 parameter with one of the

210 CHAPITRE 21. LIST CONFIGURATION PARAMETERS

following values.
– base : Search only the base object.
– one : Search the entries immediately below the base object.
– sub : Search the whole tree below the base object.

Example : (cn=testgroup,dc=cru,dc=fr should be a groupOfUniqueNames here)

include_ldap_2level_query
host ldap.univ.fr
port 389
suffix1 ou=Groups,dc=univ,dc=fr
scope1 one
filter1 (&(objectClass=groupOfUniqueNames) (| (cn=cri)(cn=ufrmi)))
attrs1 uniquemember
select1 all
suffix2 [attrs1]
scope2 base
filter2 (objectClass=n2pers)
attrs2 mail
select2 first

21.2.8 include file

include file path to file

This parameter will be interpreted only if the user data source value is set to
include. The file should contain one e-mail address per line with an optional user
description, separated from the email address by spaces (lines beginning with a ”#” are
ignored).

Sample included file :

Data for Sympa member import
john.smith@sample.edu John Smith - math department
sarah.hanrahan@sample.edu Sarah Hanrahan - physics department

21.2.9 include remote file

include remote file

This parameter (organized as a paragraph) does the same as the include file

21.3. COMMAND RELATED 211

parameter, except that it gets a remote file. This paragraph is used only if
user data source is set to include. Using this method you should be able to in-
clude any exotic data source that is not supported by Sympa. The paragraph is made of
the following entries :

– url url of remote file
This is the URL of the remote file to include.

– user user name
This entry is optional, only used if HTTP basic authentication is required to access
the remote file.

– passwd user passwd
This entry is optional, only used if HTTP basic authentication is required to access
the remote file.

Example :

include_remote_file
url http://www.myserver.edu/myfile
user john_netid
passwd john_passwd

21.3 Command related

21.3.1 subscribe

(Default value: open)

subscribe parameter is defined by an authorization scenario (see 14, page 143)

The subscribe parameter defines the rules for subscribing to the list. Predefined au-
thorization scenarios are :

– subscribe auth

– subscribe auth notify

– subscribe auth owner

– subscribe closed

– subscribe intranet

– subscribe intranetorowner

212 CHAPITRE 21. LIST CONFIGURATION PARAMETERS

– subscribe open

– subscribe open notify

– subscribe open quiet

– subscribe owner

– subscribe smime

– subscribe smimeorowner

21.3.2 unsubscribe

(Default value: open)

unsubscribe parameter is defined by an authorization scenario (see 14, page 143)

This parameter specifies the unsubscription method for the list. Use open notify or
auth notify to allow owner notification of each unsubscribe command. Predefined
authorization scenarios are :

– unsubscribe auth

– unsubscribe auth notify

– unsubscribe closed

– unsubscribe open

– unsubscribe open notify

– unsubscribe owner

21.3.3 add

(Default value: owner)

add parameter is defined by an authorization scenario (see 14, page 143)

This parameter specifies who is authorized to use the ADD command. Predefined autho-
rization scenarios are :

21.3. COMMAND RELATED 213

– add auth

– add closed

– add owner

– add owner notify

21.3.4 del

(Default value: owner)

del parameter is defined by an authorization scenario (see 14, page 143)

This parameter specifies who is authorized to use the DEL command. Predefined autho-
rization scenarios are :

– del auth

– del closed

– del owner

– del owner notify

21.3.5 remind

(Default value: owner)

remind parameter is defined by an authorization scenario (see 14, page 143)

This parameter specifies who is authorized to use the remind command. Predefined
authorization scenarios are :

– remind listmaster

– remind owner

214 CHAPITRE 21. LIST CONFIGURATION PARAMETERS

21.3.6 remind task

(Default value: no default value)

This parameter states which model is used to create a remind task. A remind task
regurlaly sends to the subscribers a message which reminds them their subscription to
list.

example :

remind annual

21.3.7 expire task

(Default value: no default value)

This parameter states which model is used to create a remind task. A expire task
regurlaly checks the inscription or reinscription date of subscribers and asks them to
renew their subscription. If they don’t they are deleted.

example :

expire annual

21.3.8 send

(Default value: private)

send parameter is defined by an authorization scenario (see 14, page 143)

This parameter specifies who can send messages to the list. Valid values for this para-
meter are pointers to scenarios.

– send closed

– send editorkey

– send editorkeyonly

– send editorkeyonlyauth

– send intranet

21.3. COMMAND RELATED 215

– send intranetorprivate

– send newsletter

– send newsletterkeyonly

– send private

– send private smime

– send privateandeditorkey

– send privateandnomultipartoreditorkey

– send privatekey

– send privatekeyandeditorkeyonly

– send privateoreditorkey

– send privateorpublickey

– send public

– send public nobcc

– send publickey

– send publicnoattachment

– send publicnomultipart

21.3.9 review

(Default value: owner)

review parameter is defined by an authorization scenario (see 14, page 143)

This parameter specifies who can use REVIEW (see 28.1, page 256), administrative re-
quests.

Predefined authorization scenarios are :

– review closed

– review intranet

216 CHAPITRE 21. LIST CONFIGURATION PARAMETERS

– review listmaster

– review owner

– review private

– review public

21.3.10 shared doc

This paragraph defines read and edit access to the shared document repository.

d read

(Default value: private)

d read parameter is defined by an authorization scenario (see 14, page 143)

This parameter specifies who can read shared documents (access the contents of a list’s
shared directory).

Predefined authorization scenarios are :

– d read owner

– d read private

– d read private-https

– d read public

d edit

(Default value: owner)

d edit parameter is defined by an authorization scenario (see 14, page 143)

This parameter specifies who can perform changes within a list’s shared directory (i.e.
upload files and create subdirectories).

21.4. LIST TUNING 217

Predefined authorization scenarios are :

– d edit editor

– d edit owner

– d edit private

– d edit private-https

– d edit public

Example :
shared_doc
d_read public
d_edit private

quota

quota number-of-Kbytes

This parameter specifies the disk quota (the unit is Kbytes) for the document repository,
in kilobytes. If quota is exceeded, file uploads fail.

21.4 List tuning

21.4.1 reply to header

The reply to header parameter starts a paragraph defining what Sympa will place in
the Reply-To: SMTP header field of the messages it distributes.

– value sender | list | all | other email (Default value: sender)
This parameter indicates whether the Reply-To: field should indicate the sender of
the message (sender), the list itself (list), both list and sender (all) or an arbitrary
e-mail address (defined by the other email parameter).
Note : it is inadvisable to change this parameter, and particularly inadvisable to set
it to list. Experience has shown it to be almost inevitable that users, mistakenly
believing that they are replying only to the sender, will send private messages to
a list. This can lead, at the very least, to embarrassment, and sometimes to more
serious consequences.

– other email an email address
If value was set to other email, this parameter defines the e-mail address used.

218 CHAPITRE 21. LIST CONFIGURATION PARAMETERS

– apply respect | forced (Default value: respect)
The default is to respect (preserve) the existing Reply-To: SMTP header field in
incoming messages. If set to forced, Reply-To: SMTP header field will be over-
written.

Example :

reply_to_header
value other_email
other_email listowner@my.domain
apply forced

21.4.2 max size

(Default value: max size robot parameter)

max size number-of-bytes

Maximum size of a message in 8-bit bytes. The default value is set in the
/usr/local/sympa-os/etc/sympa.conf file.

21.4.3 anonymous sender

anonymous sender value

If this parameter is set for a list, all messages distributed via the list are rendered anony-
mous. SMTP From : headers in distributed messages are altered to contain the value
of the anonymous sender parameter. Various other fields are removed (Received :,
Reply-To :, Sender :, X-Sender :, Message-id :, Resent-From :

21.4.4 custom header

custom header header-field : value

This parameter is optional. The headers specified will be added to the headers of mes-
sages distributed via the list. As of release 1.2.2 of Sympa, it is possible to put several
custom header lines in the configuration file at the same time.

Example: custom header X-url : http ://www.cru.fr/listes/apropos/sedesabonner.faq.html.

21.4. LIST TUNING 219

21.4.5 rfc2369 header fields

(Default value: rfc2369 header fields sympa.conf parameter)
rfc2369 header fields help,archive

RFC2369 compliant header fields (List-xxx) to be added to distributed messages. These
header-fields should be implemented by MUA’s, adding menus.

21.4.6 loop prevention regex

(Default value: loop prevention regex sympa.conf parameter)
loop prevention regexmailer-daemon—sympa—listserv—majordomo—smartlist—mailman

This regular expression is applied to messages sender address. If the sender address
matches the regular expression, then the message is rejected. The goal of this parameter
is to prevent loops between Sympa and other robots.

21.4.7 custom subject

custom subject value

This parameter is optional. It specifies a string which is added to the subject of distribu-
ted messages (intended to help users who do not use automatic tools to sort incoming
messages). This string will be surrounded by [] characters.

The custom subject can also refer to list variables ([list-¿sequence] in the example
bellow).

Example: custom subject sympa-users.

Example: custom subject newsletter num [list->sequence].

21.4.8 footer type

(Default value: mime)

footer type (optional, default value is mime) mime | append

List owners may decide to add message headers or footers to messages sent via the list.
This parameter defines the way a footer/header is added to a message.

220 CHAPITRE 21. LIST CONFIGURATION PARAMETERS

– footer type mime
The default value. Sympa will add the footer/header as a new MIME part. If the mes-
sage is in multipart/alternative format, no action is taken (since this would require
another level of MIME encapsulation).

– footer type append
Sympa will not create new MIME parts, but will try
to append the header/footer to the body of the message.
/usr/local/sympa-os/expl/mylist/message.footer.mime will be ignored.
Headers/footers may be appended to text/plain messages only.

21.4.9 digest

digest daylist hour :minutes

Definition of digest mode. If this parameter is present, subscribers can select the op-
tion of receiving messages in multipart/digest MIME format. Messages are then grou-
ped together, and compilations of messages are sent to subscribers in accordance with
the rythm selected with this parameter.

Daylist designates a list of days in the week in number format (from 0 for Sunday to 6
for Saturday), separated by commas.

Example: digest 1,2,3,4,5 15 :30

In this example, Sympa sends digests at 3 :30 PM from Monday to Friday.

WARNING : if the sending time is too late (ie around midnight), Sympa may not be
able to process it in time. Therefore do not setuse a digest time later than 23 :00.

N.B. : In family context, digest can be constrainted only on days.

21.4.10 digest max size

(Default value: 25)

Maximum number of messages in a digest. If the number of messages exceeds this
limit, then multiple digest messages are sent to each recipient.

21.4. LIST TUNING 221

21.4.11 available user options

The available user options parameter starts a paragraph to define available op-
tions for the subscribers of the list.

– reception modelist
(Default value: reception mail,notice,digest,summary,nomail)
modelist is a list of modes (mail, notice, digest, summary, nomail), separated by
commas. Only these modes will be allowed for the subscribers of this list. If a sub-
scriber has a reception mode not in the list, sympa uses the mode specified in the
default user options paragraph.

Example :
Nomail reception mode is not available
available_user_options
reception digest,mail

21.4.12 default user options

The default user options parameter starts a paragraph to define a default profile
for the subscribers of the list.

– reception notice | digest | summary | nomail | mail
Mail reception mode.

– visibility conceal | noconceal
Visibility of the subscriber with the REVIEW command.

Example :
default_user_options
reception digest
visibility noconceal

21.4.13 msg topic

The msg topic parameter starts a paragraph to define a message topic used to tag
a message. Foreach message topic, you have to define a new paragraph.(See 22.1,
page 231)

Example :

msg_topic
name os
keywords linux,mac-os,nt,xp
title Operating System

222 CHAPITRE 21. LIST CONFIGURATION PARAMETERS

Parameter msg topic.name and msg topic.title are mandatory.
msg topic.title is used on the web interface (“other” is not allowed for
msg topic.name parameter). The msg topic.keywords parameter allows to select
automatically message topic by searching keywords in the message.

N.B. : In a family context, msg topic.keywords parameter is uncompellable.

21.4.14 msg topic keywords apply on

The msg topic keywords apply on parameter defines on which part of the message
is used to perform automatic tagging.(See 22.1, page 231)

Example :
msg_topic_key_apply_on subject

Its values can be : subject | body| subject and body.

21.4.15 msg topic tagging

The msg topic tagging parameter indicates if the tagging is optional or required for
a list. (See 22.1, page 231)

Example :
msg_topic_tagging optional

Its values can be : optional | required

21.4.16 pictures feature

(Default value: pictures feature robot parameter)

pictures feature on — off

This enables the feature that allows list members to upload a picture that will be shown
on review page.

21.4.17 cookie

(Default value: cookie robot parameter)

cookie random-numbers-or-letters

21.5. BOUNCE RELATED 223

This parameter is a confidential item for generating authentication keys for administra-
tive commands (ADD, DELETE, etc.). This parameter should remain concealed, even for
owners. The cookie is applied to all list owners, and is only taken into account when
the owner has the auth parameter (owner parameter, see 21.1.5, page 201).

Example: cookie secret22

21.4.18 priority

(Default value: default list priority robot parameter)

priority 0-9

The priority with which Sympa will process messages for this list. This level of priority
is applied while the message is going through the spool.

0 is the highest priority. The following priorities can be used : 0...9 z. z is a special
priority causing messages to remain spooled indefinitely (useful to hang up a list).

Available since release 2.3.1.

21.5 Bounce related

21.5.1 bounce

This paragraph defines bounce management parameters :

– warn rate
(Default value: bounce warn rate robot parameter)
The list owner receives a warning whenever a message is distributed and the number
(percentage) of bounces exceeds this value.

– halt rate
(Default value: bounce halt rate robot parameter)
NOT USED YET
If bounce rate reaches the halt rate, messages for the list will be halted, i.e. they
are retained for subsequent moderation. Once the number of bounces exceeds this
value, messages for the list are no longer distributed.

– expire bounce task
(Default value: d)aily
Name of the task template use to remove old bounces. Usefull to remove bounces for
a subscriber email if some message are distributed without receiving new bounce. In
this case, the subscriber email seems to be OK again. Active if task manager.pl is

224 CHAPITRE 21. LIST CONFIGURATION PARAMETERS

running.

Example :

Owners are warned with 10% bouncing addresses
message distribution is halted with 20% bouncing rate
bounce
warn_rate 10
halt_rate 20

21.5.2 bouncers level1

– rate
(Default value: bouncers level1 rate config parameter)
Each bouncing user have a score (from 0 to 100).This parameter define the lower
score for a user to be a l̈evel1 bouncing user.̈ For example, with default values :
Users with a score between 45 and 80 are level1 bouncers.

– action
(Default value: bouncers level1 action config parameter)
This parameter define which task is automaticaly applied on level 1 bouncing users :
for exemple, automaticaly notify all level1 users.

– Notification
(Default value: owner)
When automatic task is executed on level 1 bouncers, a notification email can be
send to listowner or listmaster. This email contain the adresses of concerned users
and the name of the action executed.

21.5.3 bouncers level2

– rate
(Default value: bouncers level2 rate config parameter)
Each bouncing user have a score (from 0 to 100).This parameter define the lower
score for a user to be a l̈evel 2 bouncing user.̈ For example, with default values :
Users with a score between 75 and 100 are level 2 bouncers.

– action
(Default value: bouncers level1 action config parameter)
This parameter define which task is automaticaly applied on level 2 bouncing users :
for exemple, automaticaly notify all level1 users.

– Notification
(Default value: owner)
When automatic task is executed on level 2 bouncers, a notification email can be
send to listowner or listmaster. This email contain the adresses of concerned users
and the name of the action executed.

21.5. BOUNCE RELATED 225

Example :

All bouncing adresses with a score between 75 and 100
will be unsubscribed, and listmaster will recieve an email
Bouncers level 2
rate :75 Points
action : remove_bouncers
Notification : Listmaster

21.5.4 welcome return path

(Default value: welcome return path robot parameter) welcome return path
unique | owner

If set to unique, the welcome message is sent using a unique return path in order to re-
move the subscriber immediately in the case of a bounce. See welcome return path
sympa.conf parameter (7.8.2, page 67).

21.5.5 remind return path

(Default value: remind return path robot parameter) remind return path
unique | owner

Same as welcome return path, but applied to remind messages. See
remind return path sympa.conf parameter (7.8.3, page 67).

21.5.6 verp rate

(Default value: verp rate host parameter)

See 24.1,page 242 for more information on VERP in Sympa.

When verp rate is null VERP is not used ; if verp rate is 100% VERP is alway in
use.

VERP requires plussed aliases to be supported and the bounce+* alias to be installed.

226 CHAPITRE 21. LIST CONFIGURATION PARAMETERS

21.6 Archive related

Sympa maintains 2 kinds of archives : mail archives and web archives.

Mail archives can be retrieved via a mail command send to the robot, they are stored in
/usr/local/sympa-os/expl/mylist/archives/ directory.

Web archives are accessed via the web interface (with access control), they are stored
in a directory defined in wwsympa.conf.

21.6.1 archive

If the config file contains an archive paragraph Sympa will manage an archive for
this list.

Example :

archive
period week
access private

If the archive parameter is specified, archives are accessible to users through the GET
command, and the index of the list archives is provided in reply to the INDEX command
(the last message of a list can be consulted using the LAST command).

period day | week | month | quarter | year

This parameter specifies how archiving is organized : by day, week,
month, quarter, or year. Generation of automatic list archives re-
quires the creation of an archive directory at the root of the list directory
(/usr/local/sympa-os/expl/mylist/archives/), used to store these docu-
ments.

access private | public | owner | closed |

This parameter specifies who is authorized to use the GET, LAST and INDEX commands.

21.6.2 web archive

If the config file contains a web archive paragraph Sympa will copy all messages
distributed via the list to the ”queueoutgoing” spool. It is intended to be used with WW-

21.6. ARCHIVE RELATED 227

Sympa html archive tools. This paragraph must contain at least the access parameter to
control who can browse the web archive.

Example :

web_archive
access private
quota 10000

access

access web archive parameter is defined by an authorization scenario (see 14,
page 143)

Predefined authorization scenarios are :

– access closed

– access intranet

– access listmaster

– access owner

– access private

– access public

quota

quota number-of-Kbytes

This parameter specifies the disk quota for the list’s web archives, in kilobytes. This
parameter’s default is default archive quota sympa.conf parameter. If quota is
exceeded, messages are no more archived, list owner is notified. When archives are
95% full, the list owner is warned.

21.6.3 archive crypted msg

(Default value: cleartext)

228 CHAPITRE 21. LIST CONFIGURATION PARAMETERS

archive crypted msg cleartext | decrypted

This parameter defines Sympa behavior while archiving S/MIME crypted messages. If
set to cleartext the original crypted form of the message will be archived ; if set to
decrypted a decrypted message will be archived. Note that this apply to both mail
and web archives ; also to digests.

21.7 Spam protection

21.7.1 spam protection

(Default value: spam protection robot parameter)

There is a need to protection Sympa web site against spambot which collect email
adresse in public web site. Various method are available into Sympa and you can choose
it with spam protection and web archive spam protection parameters. Possible
value are :
– javascript : the adresse is hidden using a javascript. User who enable javascript can

see a nice mailto adresses where others have nothing.
– at : the @ char is replaced by the string ” AT ”.
– none : no protection against spammer.

21.7.2 web archive spam protection

(Default value: web archive spam protection robot parameter)

Idem spam protection but restricted to web archive. A additional value is available :
cookie which mean that users must submit a small form in order to receive a cookie
before browsing archives. This block all robot, even google and co.

21.8 Intern parameters

21.8.1 family name

This parameter indicates the name of the family that the list belongs to.

Example :

21.8. INTERN PARAMETERS 229

family_name my_family

21.8.2 latest instantiation

This parameter indicates the date of the latest instantiation.

Example :

latest_instantiation
email serge.aumont@cru.fr
date 27 jui 2004 at 09:04:38
date_epoch 1090911878

230 CHAPITRE 21. LIST CONFIGURATION PARAMETERS

Chapitre 22

Reception mode

22.1 Message topics

A list can be configured to have message topics (this notion is different from topics used
to class mailing lists). Users can subscribe to these message topics in order to receive a
subset of distributed messages : a message can have one or more topics and subscribers
will receive only messages that have been tagged with a topic they are subscribed to. A
message can be tagged automatically, by the message sender or by the list moderator.

22.1.1 Message topic definition in a list

Available message topics are defined by list parameters. Foreach new message topic,
create a new msg topic paragraph that defines the name and the title of the topic. If a
thread is identified for the current message then the automatic procedure is performed.
Else, to use automatic tagging, you should define keywords (See (21.4.13, page 221)
To define which part of the message is used for automatic tagging you have to define
msg topic keywords apply on list parameter (See 21.4.14, page 222). Tagging a
message can be optional or it can be required, depending on the msg topic tagging
list parameter (See (21.4.15,page 222).

22.1.2 Subscribing to message topic for list subscribers

This functionnality is only available via “normal” reception mode. Subscribers can
select message topic to receive messages tagged with this topic. To receive messages
that were not tagged, users can subscribe to the topic “other”. Message topics selected
by a subscriber are stored in Sympa database (subscriber table table).

231

232 CHAPITRE 22. RECEPTION MODE

22.1.3 Message tagging

First of all, if one or more msg topic.keywords are defined, Sympa tries to tag mes-
sages automatically. To trigger manual tagging, by message sender or list modera-
tor, on the web interface, Sympa uses authorization scenarios : if the resulted action
is “editorkey” (for example in scenario send.editorkey), the list moderator is asked
to tag the message. If the resulted action is “request auth” (for example in scenario
send.privatekey), the message sender is asked to tag the message. The following va-
riables are available as scenario variables to customize tagging : topic, topic-sender,
topic-editor, topic-auto, topic-needed. (See (14, page 143) If message tagging is requi-
red and if it was not yet performed, Sympa will ask to the list moderator.

Tagging a message will create a topic information file in the
/usr/local/sympa-os/spool/topic/ spool. Its name is based on the list-
name and the Message-ID. For message distribution, a “X-Sympa-Topic” field is
added to the message to allow members to use mail filters.

Chapitre 23

Shared documents

Shared documents are documents that different users can manipulate on-line via the
web interface of Sympa, provided that the are authorized to do so. A shared space is
associated with a list, and users of the list can upload, download, delete, etc, documents
in the shared space.

WWSympa shared web features are fairly rudimentary. It is not our aim to provide a
sophisticated tool for web publishing, such as are provided by products like Rearsite. It
is nevertheless very useful to be able to define privilege on web documents in relation
to list attributes such as subscribers, list owners, or list editors.

All file and directory names are lowercased by Sympa. It is consequently impossible
to create two different documents whose names differ only in their case. The reason
Sympa does this is to allow correct URL links even when using an HTML document
generator (typically Powerpoint) which uses random case for file names !

In order to have better control over the documents and to enforce security in the shared
space, each document is linked to a set of specific control information : its access rights.

A list’s shared documents are stored in the
/usr/local/sympa-os/expl/mylist/shared directory.

This chapter describes how the shared documents are managed, especially as regards
their access rights. We shall see :

– the kind of operations which can be performed on shared documents
– access rights management
– access rights control specifications
– actions on shared documents
– template files

233

234 CHAPITRE 23. SHARED DOCUMENTS

23.1 The three kind of operations on a document

Where shared documents are concerned, there are three kinds of operation which have
the same constraints relating to access control :
– The read operation :

– If applied on a directory, opens it and lists its contents (only those sub-documents
the user is authorized to “see”).

– If applied on a file, downloads it, and in the case of a viewable file (text/plain,
text/html, or image), displays it.

– The edit operation allows :

– Subdirectory creation
– File uploading
– File unzipping
– Description of a document (title and basic information)
– On-line editing of a text file
– Document (file or directory) removal. If on a directory, it must be empty.
These different edit actions are equivalent as regards access rights. Users who are
authorized to edit a directory can create a subdirectory or upload a file to it, as well
as describe or delete it. Users authorized to edit a file can edit it on-line, describe it,
replace or remove it.

– The control operation :
The control operation is directly linked to the notion of access rights. If we wish
shared documents to be secure, we have to control the access to them. Not every-
body must be authorized to do everything to them. Consequently, each document
has specific access rights for reading and editing. Performing a control action on a
document involves changing its Read/Edit rights.
The control operation has more restrictive access rights than the other two opera-
tions. Only the owner of a document, the privileged owner of the list and the listmas-
ter have control rights on a document. Another possible control action on a document
is therefore specifying who owns it.

23.2 The description file

The information (title, owner, access rights...) relative to each document must be stored,
and so each shared document is linked to a special file called a description file, whose
name includes the .desc prefix.

The description file of a directory having the path mydirectory/mysubdirectory
has the path mydirectory/mysubdirectory/.desc . The description file of a
file having the path mydirectory/mysubdirectory/myfile.myextension has the
path mydirectory/mysubdirectory/.desc.myfile.myextension .

23.3. THE PREDEFINED AUTHORIZATION SCENARIOS 235

23.2.1 Structure of description files

The structure of a document (file or directory) description file is given below. You
should never have to edit a description file.

title
<description of the file in a few words>

creation
email <e-mail of the owner of the document>
date_epoch <date_epoch of the creation of the document>

access
read <access rights for read>
edit <access rights for edit>

The following example is for a document that subscribers can read, but which only the
owner of the document and the owner of the list can edit.

title
module C++ which uses the class List

creation
email foo@some.domain.com
date_epoch 998698638

access
read private
edit owner

23.3 The predefined authorization scenarios

23.3.1 The public scenario

The public scenario is the most permissive scenario. It enables anyone (including unk-
nown users) to perform the corresponding action.

23.3.2 The private scenario

The private scenario is the basic scenario for a shared space. Every subscriber of the list
is authorized to perform the corresponding action. The private scenario is the default
read scenario for shared when this shared space is created. This can be modified by
editing the list configuration file.

236 CHAPITRE 23. SHARED DOCUMENTS

23.3.3 The scenario owner

The scenario owner is the most restrictive scenario for a shared space. Only the list-
master, list owners and the owner of the document (or those of a parent document)
are allowed to perform the corresponding action. The owner scenario is the default
scenario for editing.

23.3.4 The scenario editor

The scenario editor is for a moderated shared space for editing. Every suscriber of
the list is allowed to editing a document. But this document will have to be installed or
rejected by the editor of the list. Documents awaiting for moderation are visible by their
author and the editor(s) of the list in the shared space. The editor has also an interface
with all documents awaiting. When there is a new document, the editor is notiied and
when the document is installed, the author is notiied too. In case of reject, the editor
can notify the author or not.

23.4 Access control

Access control is an important operation performed every time a document within the
shared space is accessed.

The access control relative to a document in the hierarchy involves an iterative opera-
tion on all its parent directories.

23.4.1 Listmaster and privileged owners

The listmaster and privileged list owners are special users in the shared web. They are
allowed to perform every action on every document in the shared space. This privilege
enables control over the shared space to be maintained. It is impossible to prevent the
listmaster and privileged owners from performing whatever action they please on any
document in the shared space.

23.4.2 Special case of the shared directory

In order to allow access to a root directory to be more restrictive than that of its sub-
directories, the shared directory (root directory) is a special case as regards access
control. The access rights for read and edit are those specified in the list configuration

23.4. ACCESS CONTROL 237

file. Control of the root directory is specific. Only those users authorized to edit a list’s
configuration may change access rights on its shared directory.

23.4.3 General case

mydirectory/mysubdirectory/myfile is an arbitrary document in the shared
space, but not in the root directory. A user X wishes to perform one of the three opera-
tions (read, edit, control) on this document. The access control will proceed as follows :
– Read operation

To be authorized to perform a read action on
mydirectory/mysubdirectory/myfile, X must be authorized to read every
document making up the path ; in other words, she must be allowed to read myfile
(the authorization scenario of the description file of myfile must return do it for
user X), and the same goes for mysubdirectory and mydirectory).
In addition, given that the owner of a document or one of its pa-
rent directories is allowed to perform all actions on that document,
mydirectory/mysubdirectory/myfile may also have read operations per-
formed on it by the owners of myfile, mysubdirectory, and mydirectory.
This can be schematized as follows :

X can read <a/b/c>

if

(X can read <c>
AND X can read
AND X can read <a>)

OR

(X owner of <c>
OR X owner of
OR X owner of <a>)

– Edit operation
The access algorithm for edit is identical to the algorithm for read :

X can edit <a/b/c>

if

(X can edit <c>
AND X can edit
AND X can edit <a>)

OR

(X owner of <c>
OR X owner of
OR X owner of <a>)

238 CHAPITRE 23. SHARED DOCUMENTS

– Control operation
The access control which precedes a control action (change rights or set the owner of
a document) is much more restrictive. Only the owner of a document or the owners
of a parent document may perform a control action :

X can control <a/b/c>

if

(X owner of <c>
OR X owner of
OR X owner of <a>)

23.5 Shared document actions

The shared web feature has called for some new actions.
– action D ADMIN

Create the shared web, close it or restore it. The d admin action is accessible from a
list’s admin page.

– action D READ
Reads the document after read access control. If a folder, lists all the subdocuments
that can be read. If a file, displays it if it is viewable, else downloads it to disk. If
the document to be read contains a file named index.html or index.htm, and if
the user has no permissions other than read on all contained subdocuments, the read
action will consist in displaying the index. The d read action is accessible from a
list’s info page.

– action D CREATE DIR
Creates a new subdirectory in a directory that can be edited without moderation.
The creator is the owner of the directory. The access rights are those of the parent
directory.

– action D DESCRIBE
Describes a document that can be edited.

– action D DELETE
Deletes a document after edit access control. If applied to a folder, it has to be empty.

– action D UPLOAD
Uploads a file into a directory that can be edited.

– action D UNZIP
Unzip a file into a directory that can be edited without moderation. The whole file
hierarchy contained in the zip file is installed into the directory.

– action D OVERWRITE
Overwrites a file if it can be edited. The new owner of the file is the one who has
done the overwriting operation.

– actions D EDIT FILE and D SAVE FILE
Edits a file and saves it after edit access control. The new owner of the file is the one
who has done the saving operation.

– action D CHANGE ACCESS
Changes the access rights of a document (read or edit), provided that control of this

23.6. TEMPLATE FILES 239

document is authorized.
– action D SET OWNER

Changes the owner of a directory, provided that control of this document is authori-
zed. The directory must be empty. The new owner can be anyone, but authentication
is necessary before any action may be performed on the document.

23.6 Template files

The following template files have been created for the shared web :

23.6.1 d read.tt2

The default page for reading a document. If for a file, displays it (if viewable) or down-
loads it. If for a directory, displays all readable subdocuments, each of which will fea-
ture buttons corresponding to the different actions this subdocument allows. If the di-
rectory is editable, displays buttons to describe it or upload a file to it. If the directory is
editable without moderation, it displays button to create a new subdirector or to upload
a zip file in order to install a file hierarchy. If access to the document is editable, dis-
plays a button to edit the access to it.

23.6.2 d editfile.tt2

The page used to edit a file. If for a text file, allows it to be edited on-line. This page
also enables another file to be substituted in its place.

23.6.3 d control.tt2

The page to edit the access rights and the owner of a document.

23.6.4 d upload.tt2

This page to upload a file is only used when the name of the file already exists.

240 CHAPITRE 23. SHARED DOCUMENTS

23.6.5 d properties.tt2

This page is used to edit description file and to rename it.

Chapitre 24

Bounce management

Sympa allows bounce (non-delivery report) management. This prevents list owners
from receiving each bounce (1 per message sent to a bouncing subscriber) in their
own mailbox. Without automatic processing of bounces, list owners either go mad, or
just delete them without further attention.

Bounces are received at mylist-owner address (note that the -owner suffix can be cus-
tomized, see 7.8.4, page 67), which should be sent to the bouncequeue program via
aliases :

\samplelist-owner: "|/usr/local/sympa-os/bin/bouncequeue \samplelist"

bouncequeue (see 2.2, page 23) stores bounces in a
/usr/local/sympa-os/spool/bounce/ spool.

Bounces are then processed by the bounced.pl daemon. This daemon analyses
bounces to find out which e-mail addresses are concerned and what kind of error
was generated. If bouncing addresses match a subscriber’s address, information is sto-
red in the Sympa database (in subscriber table). Moreover, the most recent bounce
itself is archived in bounce path/mylist/email (where bounce path is defined in a
wwsympa.conf parameter and email is the user e-mail address).

When reviewing a list, bouncing addresses are tagged as bouncing. You may access
further information such as dates of first and last bounces, number of received bounces
for the address, the last bounce itself.

With these informations, the automatic bounce management is possible :

– The automatic task eval bouncer gives a score foreach bouncing user. The score,
between 0 to 100, allows the classification of bouncing users in two levels. (Le-

241

242 CHAPITRE 24. BOUNCE MANAGEMENT

vel 1 or 2). According to the level, automatic actions are executed periodicaly by
process bouncers task.

– The score evaluation main parameters are :
Bounces count : The number of bouncing messages received by sympa for the
user.
Type rate : Bounces are classified depending on the type of errors generated on
the user side. If the error type is ”mailbox is full” (ie a temporary 4.2.2 error type)
the type rate will be 0.5 whereas permanent errors (5.x.x) have a type rate equal to
1.
Regularity rate : This rate tells if the bounces where received regularly, compa-
red to list traffic. The list traffic is deduced from msg count file data.

The score formula is :

Score = bounce_count * type_rate * regularity_rate

To avoid making decisions (ie defining a score) without enough relevant data, the
score is not evaluated if :
– The number of the number of received bounces is lower than
minimum bouncing count (see 7.8.9, page 68)

– The bouncing period is shorter than minimum bouncing period (see 7.8.10,
page 69)

Bouncing list members entries get expired after a given period of time. The default
period is 10 days but it can be customized if you write a new expire bounce task
(see 7.8.5 ,page 68).

– You can define the limit between each level via the List configuration pannel, in
subsection Bounce settings. (see 21.5.2) The principle consists in associating a score
interval with a level.

– You can also define which action must be applied on each category of user.(see
21.5.2) Each time an action will be done, a notification email will be send to the
person of your choice. (see 21.5.2)

24.1 VERP

VERP (Variable Envelop Return Path) is used to ease automatic recognition of sub-
scribers email address when receiving a bounce. If VERP is enabled, the subscriber
address is encoded in the return path itself so Sympa bounce management processus
(bounced) will use the address the bounce was received for to retreive the subscriber
email. This is very usefull because sometimes, non delivery report don’t contain the
initial subscriber email address but an alternative address where messages are forwar-
ded. VERP is the only solution to detect automaticaly these subscriber errors but the
cost of VERP is significant, indeed VERP requires to distribute a separate message for
each subscriber and break the bulk emailer grouping optimization.

In order to benefit from VERP and keep distribution process fast, Sympa enables VERP
only for a share of the list members. If texttt verp rate (see 7.8.1,page 67) is 10% then

24.2. ARF 243

after 10 messages distributed in the list all subscribers have received at least one mes-
sage where VERP was enabled. Later distribution message enable VERP also for all
users where some bounce wer collected and analysed by previous VERP mechanism.

If VERP is enabled, the format of the messages return path are as follows :

Return-Path: <bounce+user==a==userdomain==listname@listdomain>

Note that you need to set a mail alias for the generic bounce+* alias (see 6.1, page 45).

24.2 ARF

ARF (Abuse Feedback Reporting Format) is standard for reporting abuse. It is im-
plemented mainly in AOL email user interface. Aol server propose to mass mailer to
received automatically the users complain by formated messages. Because many sub-
scribers don’t want to remind how to unsubscribe tey use ARF when provided by user
interface. It may usefull to configure the ARF managment in Sympa. It really simple :
all what you have to do is to create a new alias for each virtual robot as the following :

abuse-feedback-report: "| /usr/local/sympa-os/bin/bouncequeue sympa@\samplerobot"\\

Then register this address as your loop back email address with ISP (for exemple AOL).
This way messages to that email adress are processed by bounced deamon and opt-out
opt-out-list abuse and automatically processed. If bounce service can remove a user
the message report feedback is forwarded to the list owner. Unrecognize message are
forwarded to the listmaster.

244 CHAPITRE 24. BOUNCE MANAGEMENT

Chapitre 25

Antivirus

Sympa lets you use an external antivirus solution to check incoming mails.
In this case you must set the antivirus path and antivirus args confi-
guration parameters (see 7.13, page 77. Sympa is already compatible with
McAfee/uvscan, Fsecure/fsav, Sophos, AVP, Trend Micro/VirusWall and Clam
Antivirus. For each mail received, Sympa extracts its MIME parts in the
/usr/local/sympa-os/spool/tmp/antivirus directory and then calls the antivi-
rus software to check them. When a virus is detected, Sympa looks for the virus name
in the virus scanner STDOUT and sends a your infected msg.tt2 warning to the
sender of the mail. The mail is saved as ’bad’ and the working directory is deleted
(except if Sympa is running in debug mode).

245

246 CHAPITRE 25. ANTIVIRUS

Chapitre 26

Using Sympa with LDAP

LDAP is a client-server protocol for accessing a directory service. Sympa provide va-
rious features based on access to one or more LDAP directories :

– authentication using LDAP directory instead of sympa internal storage of password
see 13.5, page 132

– named filters used in authorization scenario condition
see 14.2, page 147

– LDAP extraction of list subscribers (see 21.2.1)

– LDAP extraction of list owners or editors
see 18.7, page 172

– mail aliases stored in LDAP
see 6.3, page 48

247

248 CHAPITRE 26. USING SYMPA WITH LDAP

Chapitre 27

Sympa with S/MIME and
HTTPS

S/MIME is a cryptographic method for Mime messages based on X509 certificates.
Before installing Sympa S/Mime features (which we call S/Sympa), you should be
under no illusion about what the S stands for : “S/MIME” means “Secure MIME”.
That S certainly does not stand for “Simple”.

The aim of this chapter is simply to describe what security level is provided by Sympa
while using S/MIME messages, and how to configure Sympa for it. It is not intended
to teach anyone what S/Mime is and why it is so complex ! RFCs numbers 2311, 2312,
2632, 2633 and 2634, along with a lot of literature about S/MIME, PKCS#7 and PKI
is available on the Internet. Sympa 2.7 is the first version of Sympa to include S/MIME
features as beta-testing features.

27.1 Signed message distribution

No action required. You probably imagine that any mailing list manager (or any mail
forwarder) is compatible with S/MIME signatures, as long as it respects the MIME
structure of incoming messages. You are right. Even Majordomo can distribute a signed
message ! As Sympa provides MIME compatibility, you don’t need to do anything in
order to allow subscribers to verify signed messages distributed through a list. This is
not an issue at all, since any processe that distributes messages is compatible with end
user signing processes. Sympa simply skips the message footer attachment (ref 18.11,
page 176) to prevent any body corruption which would break the signature.

249

250 CHAPITRE 27. SYMPA WITH S/MIME AND HTTPS

27.2 Use of S/MIME signature by Sympa itself

Sympa is able to verify S/MIME signatures in order to apply S/MIME authentication
methods for message handling. Currently, this feature is limited to the distribution pro-
cess, and to any commands Sympa might find in the message body. The reasons for this
restriction are related to current S/MIME usage. S/MIME signature structure is based
on the encryption of a digest of the message. Most S/MIME agents do not include any
part of the message headers in the message digest, so anyone can modify the message
header without signature corruption ! This is easy to do : for example, anyone can edit a
signed message with their preferred message agent, modify whatever header they want
(for example Subject : , Date : and To :, and redistribute the message to a list or
to the robot without breaking the signature.

So Sympa cannot apply the S/MIME authentication method to a command parsed in
the Subject : field of a message or via the -subscribe or -unsubscribe e-mail
address.

27.3 Use of S/MIME encryption

S/Sympa is not an implementation of the “S/MIME Symmetric Key Distribution” in-
ternet draft. This sophisticated scheme is required for large lists with encryption. So,
there is still some scope for future developments :)

We assume that S/Sympa distributes message as received, i.e. unencrypted when the
list receives an unencrypted message, but otherwise encrypted.

In order to be able to send encrypted messages to a list, the sender needs to use the
X509 certificate of the list. Sympa will send an encrypted message to each subscriber
using the subscriber’s certificate. To provide this feature, Sympa needs to manage one
certificate for each list and one for each subscriber. This is available in Sympa version
2.8 and above.

27.4 S/Sympa configuration

27.4.1 Installation

The only requirement is OpenSSL (http ://www.openssl.org) version 0.9.5a and above.
OpenSSL is used by Sympa as an external plugin (like sendmail or postfix), so it must
be installed with the appropriate access (x for sympa.sympa).

27.4. S/SYMPA CONFIGURATION 251

27.4.2 managing user certificates

User certs are automatically catched by Sympa when receiving a signed s/mime mess-
sage so if Sympa needs to send encrypted message to this user it can perform encryption
using this certificate. This works fine but it’s not conpliant with the PKI theory : Sympa
should be able to search for user certificates using PKI certificate directory (LDAP) .

That’s why Sympa tests the key usage certificate attribute to known if the certificate
allows both encryption and signature.

Certificates are stored as PEM files in the /usr/local/sympa-os/expl/X509-user-certs/
directory. Files are named user@some.domain@enc or user@some.domain@sign
(@enc and @sign suffix are used according to certificates usage. No other tool is
provided by Sympa in order to collect this certificate repository but you can easily
imagine your own tool to create those files.

27.4.3 configuration in sympa.conf

S/Sympa configuration is very simple. If you are used to Apache SSL, you should not
feel lost. If you are an OpenSSL guru, you will feel at home, and there may even be
changes you will wish to suggest to us.

The basic requirement is to let Sympa know where to find the binary file for the
OpenSSL program and the certificates of the trusted certificate authority. This is done
using the optional parameters openSSL and capath and / or cafile.

– openssl : the path for the OpenSSL binary file, usually
/usr/local/ssl/bin/openSSL

– cafile (or capath) : the path of a bundle (or path of the directory) of trusted CA
certificates The file ~/usr/local/sympa-os/bin/etc/cabundle.crt included
in Sympa distribution can be used.
The cafile file (or the capath directory) should be shared with your
Apache+mod ssl configuration. This is required because Sympa’s web interface gets
user certificates information from Apache mod ssl module.

– key password : the password used to protect all list private keys. xxxxxxx

27.4.4 configuration to recognize S/MIME signatures

Once OpenSSL has been installed, and sympa.conf configured, your S/Sympa is ready
to use S/Mime signatures for any authentication operation. You simply need to use
the appropriate authorization scenario for the operation you want to secure. (see 14,
page 143).

252 CHAPITRE 27. SYMPA WITH S/MIME AND HTTPS

When receiving a message, Sympa applies the authorization scenario with the appro-
priate authentication method parameter. In most cases the authentication method is
“smtp”, but in cases where the message is signed and the signature has been checked
and matches the sender e-mail, Sympa applies the “smime” authentication method.

It is vital to ensure that if the authorization scenario does not recognize this authentica-
tion method, the operation requested will be rejected. Consequently, authorization sce-
narios distributed prior to version 2.7 are not compatible with the OpenSSL configura-
tion of Sympa. All standard authorization scenarios (those distributed with sympa) now
include the smime method. The following example is named send.private smime,
and restricts sends to subscribers using an S/mime signature :

title.us restricted to subscribers check smime signature
title.fr limit\’e aux abonn\’es, v\’erif de la signature smime

is_subscriber([listname],[sender]) smime -> do_is_editor([listname],[sender]) smime -> do_it
is_owner([listname],[sender]) smime -> do_it

It as also possible to mix various authentication methods in a single authorization sce-
nario. The following example, send.private key, requires either an md5 return key
or an S/Mime signature :

title.us restricted to subscribers with previous md5 authentication
title.fr r\’serv\’e aux abonn\’es avec authentification MD5 pr\’ealable

is_subscriber([listname],[sender]) smtp -> request_auth
true() md5,smime -> do_it

27.4.5 distributing encrypted messages

In this section we describe S/Sympa encryption features. The goal is to use S/MIME
encryption for distribution of a message to subscribers whenever the message has been
received encrypted from the sender.

Why is S/Sympa concerned by the S/MIME encryption distribution process ? It is be-
cause encryption is performed using the recipient X509 certificate, whereas the signa-
ture requires the sender’s private key. Thus, an encrypted message can be read by the
recipient only if he or she is the owner of the private key associated with the certificate.
Consequently, the only way to encrypt a message for a list of recipients is to encrypt
and send the message for each recipient. This is what S/Sympa does when distributing
an encrypted message.

The S/Sympa encryption feature in the distribution process supposes that Sympa has
received an encrypted message for some list. To be able to encrypt a message for
a list, the sender must have some access to an X509 certificate for the list. So the
first requirement is to install a certificate and a private key for the list. The mecha-
nism whereby certificates are obtained and managed is complex. Current versions of

27.5. MANAGING CERTIFICATES WITH TASKS 253

S/Sympa assume that list certificates and private keys are installed by the listmaster
using /usr/local/sympa-os/bin/p12topem.pl script. This script allows you to
install a PKCS#12 bundle file containing a private key and a certificate using the ap-
propriate format.

It is a good idea to have a look at the OpenCA (http ://www.openssl.org) documen-
tation and/or PKI providers’ web documentation. You can use commercial certificates
or home-made ones. Of course, the certificate must be approved for e-mail applica-
tions, and issued by one of the trusted CA’s described in the cafile file or the capath
Sympa configuration parameter.

The list private key must be installed in a file named
/usr/local/sympa-os/expl/mylist/private key. All the list private keys
must be encrypted using a single password defined by the password parameter in
sympa.conf.

Use of navigator to obtain X509 list certificates

In many cases e-mail X509 certificates are distributed via a web server and loaded into
the browser using your mouse :) Mozilla or internet explorer allows certificates to be
exported to a file.

Here is a way to install a certificat for a list :

– Get a list certificate is to obtain an personal e-mail certificate for the canonical list
address in your browser as if it was your personal certificate,

– export the intended certificate it. The format used by Netscape is “pkcs#12”. Copy
this file to the list home directory.

– convert the pkcs#12 file into a pair of pem files : cert.pem and private key using
the /usr/local/sympa-os/bin/p12topem.pl script. Use p12topem.pl -help
for details.

– be sure that cert.pem and private key are owned by sympa with “r” access.
– As soon as a certificate is installed for a list, the list home page includes a new link

to load the certificate to the user’s browser, and the welcome message is signed by
the list.

27.5 Managing certificates with tasks

You may automate the management of certificates with two global task models pro-
vided with Sympa. See 17.8, page 164 to know more about tasks. Report to 7.12.4,
page 76 to configure your Sympa to use these facilities.

254 CHAPITRE 27. SYMPA WITH S/MIME AND HTTPS

27.5.1 chk cert expiration.daily.task model

A task created with the model chk cert expiration.daily.task
checks every day the expiration date of certificates stored in the
/usr/local/sympa-os/expl/X509-user-certs/ directory. The user is war-
ned with the daily cert expiration template when his certificate has expired or is
going to expire within three days.

27.5.2 crl update.daily.task model

You may use the model crl update.daily.task to create a task which daily updates
the certificate revocation lists when needed.

Chapitre 28

Using Sympa commands

Users interact with Sympa, of course, when they send messages to one of the lists, but
also indirectly through administrative requests (subscription, list of users, etc.).

This section describes administrative requests, as well as interaction modes in the
case of private and moderated lists. Administrative requests are messages whose body
contains commands understood by Sympa, one per line. These commands can be in-
discriminately placed in the Subject: or in the body of the message. The To: address
is generally the sympa@domain alias, although it is also advisable to recognize the
listserv@domain address.

Example :

From: pda@prism.uvsq.fr
To: sympa@cru.fr

LISTS
INFO sympa-users
REVIEW sympa-users
QUIT

Most user commands have three-letter abbreviations (e.g. REV instead of REVIEW).

28.1 User commands

– HELP
Provides instructions for the use of Sympa commands. The result is the content of
the helpfile.tt2 template file.

– INFO listname

255

256 CHAPITRE 28. USING SYMPA COMMANDS

Provides the parameters of the specified list (owner, subscription mode, etc.) and its
description. The result is the content of ~welcome[.mime].

– LISTS
Provides the names of lists managed by Sympa. This list is generated dynamically,
using the visibility (see 21.1.9, page 203). The lists.tt2 template defines the
message return by the LISTS command.

– REVIEW listname
Provides the addresses of subscribers if the run mode authorizes it. See the review
parameter (21.3.9, page 215) for the configuration file of each list, which controls
consultation authorizations for the subscriber list. Since subscriber addresses can be
abused by spammers, it is strongly recommended that you only authorize owners
to access the subscriber list.

– WHICH
Returns the list of lists to which one is subscribed, as well as the configuration
of his or her subscription to each of the lists (DIGEST, NOMAIL, SUMMARY,
CONCEAL).

– STATS listname
Provides statistics for the specified list : number of messages received, number
of messages sent, megabytes received, megabytes sent. This is the contents of the
stats file.
Access to this command is controlled by the review parameter.

– INDEX listname
Provides index of archives for specified list. Access rights to this function are the
same as for the GET command.

– GET listname archive
To retrieve archives for list (see above). Access rights are the same as for the REVIEW
command. See review parameter (21.3.9, page 215).

– LAST listname
To receive the last message distributed in a list (see above). Access rights are the
same as for the GET command.

– SUBSCRIBE listname firstname name
Requests sign-up to the specified list. The firstname and name are optional. If the list
is parameterized with a restricted subscription (see subscribe parameter, 21.3.1,
page 211), this command is sent to the list owner for approval.

– INVITE listname user@host name
Invite someone to subscribe to the specified list. The name is optional. The command
is similar to the ADD but the specified person is not added to the list but invited to
subscribe to it in accordance with the subscribe parameter, 21.3.1, page 211).

– SIGNOFF listname [user@host]
Requests unsubscription from the specified list. SIGNOFF * means unsubscription
from all lists.

– SET listname DIGEST
Puts the subscriber in digest mode for the listname list. Instead of receiving mail
from the list in a normal manner, the subscriber will periodically receive it in a
DIGEST. This DIGEST compiles a group of messages from the list, using multi-
part/digest mime format.
The sending period for these DIGESTs is regulated by the list owner using the
digest parameter (see 21.4.9, page 220). See the SET LISTNAME MAIL command
(28.1, page 257) and the reception parameter (18.4, page 171).

– SET listname SUMMARY

28.1. USER COMMANDS 257

Puts the subscriber in summary mode for the listname list. Instead of receiving mail
from the list in a normal manner, the subscriber will periodically receive the list of
messages. This mode is very close to the DIGEST reception mode but the subscriber
receives only the list of messages.
This option is available only if the digest mode is set.

– SET listname NOMAIL
Puts subscriber in nomail mode for the listname list. This mode is used when a sub-
scriber no longer wishes to receive mail from the list, but nevertheless wishes to
retain the possibility of posting to the list. This mode therefore prevents the sub-
scriber from unsubscribing and subscribing later on. See the SET LISTNAME MAIL
command (28.1, page 257) and the reception (18.4, page 171).

– SET listname TXT
Puts subscriber in txt mode for the listname list. This mode is used when a subscriber
wishes to receive mails sent in both format txt/html and txt/plain only in txt/plain
format. See the reception (18.4, page 171).

– SET listname HTML
Puts subscriber in html mode for the listname list. This mode is used when a subscri-
ber wishes to receive mails sent in both format txt/html and txt/plain only in txt/html
format. See the reception (18.4, page 171).

– SET listname URLIZE
Puts subscriber in urlize mode for the listname list. This mode is used when a sub-
scriber wishes not to receive attached files. The attached files are replaced by an
URL leading to the file stored on the list site.
See the reception (18.4, page 171).

– SET listname NOT ME
Puts subscriber in not me mode for the listname list. This mode is used when a
subscriber wishes not to receive back the message that he has sent to the list.
See the reception (18.4, page 171).

– SET listname MAIL
Puts the subscriber in normal mode (default) for the listname list. This option is
mainly used to cancel the nomail, summary or digest modes. If the subscriber was
in nomail mode, he or she will again receive mail from the list in a normal manner.
See the SET LISTNAME NOMAIL command (28.1, page 257) and the reception
parameter (18.4, page 171). Moreover, this mode allows message topic subscription
(22.1, page 231)

– SET listname CONCEAL
Puts the subscriber in conceal mode for the listname list. The subscriber will then be-
come invisible during REVIEW on this list. Only owners will see the whole subscriber
list.
See the SET LISTNAME NOCONCEAL command (28.1, page 257) and the
visibility parameter (21.1.9, page 203).

– SET listname NOCONCEAL
Puts the subscriber in noconceal mode (default) for listname list. The subscriber will
then become visible during REVIEW of this list. The conceal mode is then cancelled.
See SET LISTNAME CONCEAL command (28.1, page 257) and visibility para-
meter (21.1.9, page 203).

– QUIT
Ends acceptance of commands. This can prove useful when the message contains
additional lines, as for example in the case where a signature is automatically added
by the user’s mail program (MUA).

258 CHAPITRE 28. USING SYMPA COMMANDS

– CONFIRM key
If the send parameter of a list is set to privatekey, publickey or
privateorpublickey, messages are only distributed in the list after an authen-
tication phase by return mail, using a one-time password (numeric key). For this
authentication, the sender of the message is requested to post the “CONFIRM key”
command to Sympa.

– QUIET
This command is used for silent (mute) processing : no performance report is retur-
ned for commands prefixed with QUIET.

28.2 Owner commands

Some administrative requests are only available to list owner(s). They are indispensable
for all procedures in limited access mode, and to perform requests in place of users.
These comands are :

– ADD listname user@host firstname name
Add command similar to SUBSCRIBE. You can avoid user notification by using the
QUIET prefix (ie : QUIET ADD).

– DELETE listname user@host
Delete command similar to SIGNOFF. You can avoid user notification by using the
QUIET prefix (ie : QUIET DELETE).

– REMIND listname
REMIND is used by list owners in order to send an individual service reminder mes-
sage to each subscriber. This message is made by parsing the remind.tt2 file.

– REMIND *
REMIND is used by the listmaster to send to each subscriber of any list a single
message with a summary of his/her subscriptions. In this case the message sent is
constructed by parsing the global remind.tt2 file. For each list, Sympa tests whether
the list is configured as hidden to each subscriber (parameter lparam visibility). By
default the use of this command is restricted to listmasters. Processing may take a
lot of time !

As above, these commands can be prefixed with QUIET to indicate processing without
acknowledgment of receipt.

28.3 Moderator commands

If a list is moderated, Sympa only distributes messages enabled by one of its mode-
rators (editors). Moderators have several methods for enabling message distribution,
depending on the send list parameter (21.3.8, page 214).

– DISTRIBUTE listname key

28.3. MODERATOR COMMANDS 259

If the send parameter of a list is set to editorkey or editorkeyonly, each mes-
sage queued for moderation is stored in a spool (see 7.6.4, page 62), and linked to a
key.
The moderator must use this command to enable message distribution.

– REJECT listname key
The message with the key key is deleted from the moderation spool of the listname
list.

– MODINDEX listname
This command returns the list of messages queued for moderation for the listname
list.
The result is presented in the form of an index, which supplies, for each message, its
sending date, its sender, its size, and its associated key, as well as all messages in the
form of a digest.

260 CHAPITRE 28. USING SYMPA COMMANDS

Chapitre 29

Internals

This chapter describes these modules (or a part of) :
– src/mail.pm : low level of mail sending
– src/List.pm : list processing and informations about structure and access to list

configuration parameters
– src/sympa.pm : the main script, for messages and mail commands processing.
– src/Commands.pm : mail commands processing
– src/wwsympa.pm : web interface
– src/report.pm : notification and error reports about requested services (mail and

web)
– src/tools.pm : various tools
– src/Message.pm : Message object used to encapsule a received message.

29.1 mail.pm

This module deals with mail sending and does the SMTP job. It provides a function for
message distribution to a list, the message can be encrypted. There is also a function to
send service messages by parsing tt2 files, These messages can be signed. For sending,
a call to sendmail is done or the message is pushed in a spool according to calling
context.

29.1.1 public functions

mail file(), mail message(), mail forward(), set send spool(), reaper().

261

262 CHAPITRE 29. INTERNALS

mail file()

Message is written by parsing a tt2 file (or with a string). It writes mail headers if they
are missing and they are encoded. Then the message is sent by calling mail : :sending()
function (see 29.1.2, page 264).

IN :

1. filename : string - tt2 filename | ” - no tt2 filename sent

2. rcpt (+) : SCALAR | ref(ARRAY) - SMTP ”RCPT To :” field

3. data (+) : ref(HASH) - used to parse tt2 file, contains header values, keys are :
– return path (+) : SMTP ”MAIL From :” field if send by SMTP, q ”X-

Sympa-From :” field if send by spool
– to : ”To :” header field else it is $rcpt
– from : ”From :” field if $filename is not a full msg
– subject : ”Subject :” field if $filename is not a full msg
– replyto : ”Reply-to :” field if $filename is not a full msg
– headers : ref(HASH), keys are other mail headers
– body : body message if not $filename
– lang : tt2 language if $filename
– list : ref(HASH) if sign mode=’smime’ - keys are :

– name : list name
– dir : list directory

4. robot (+) : robot

5. sign mode : ’smime’- the mail is signed with smime | undef - no signature

OUT : 1

mail message()

Distributes a message to a list. The message is encrypted if needed, in this case, only
one SMTP session is used for each recepient otherwise, recepient are grouped by do-
main for sending (it controls the number recepient arguments to call sendmail). Mes-
sage is sent by calling mail : :sendto() function (see 29.1.2, page 264).

IN :

1. message (+) : ref(Message) - message to distribute

2. from (+) : message from

3. robot (+) : robot

4. rcpt (+) : ARRAY - recepients

OUT : $numsmtp = number of sendmail process | undef

29.1. MAIL.PM 263

mail forward()

Forward a message by calling mail : :sending() function (see 29.1.2, page 264).

IN :

1. msg (+) : ref(Message) | ref(MIME : :Entity) | string - message to forward

2. from (+) : message from

3. rcpt (+) : ref(SCALAR) | ref(ARRAY) - recepients

4. robot (+) : robot

OUT : 1 | undef

set send spool()

Used by other processes than sympa.pl to indicate to send message by writing message
in spool instead of calling mail : :smtpto() function (see 29.1.2, page 265). The concer-
ned spool is set in $send spool global variable, used by mail : :sending() function
(see 29.1.2, page 264).

IN :

1. spool (+) : the concerned spool for sending.

OUT : -

reaper()

Non blocking function used to clean the defuncts child processes by waiting for them
and then decreasing the counter. For exemple, this function is called by mail : :smtpto()
(see 29.1.2, page 265), main loop of sympa.pl, task manager.pl, bounced.pl.

IN :

1. block

OUT : the pid of the defunct process | -1 if there is no such child process.

29.1.2 private functions

sendto(), sending(), smtpto().

264 CHAPITRE 29. INTERNALS

sendto()

Encodes subject header. Encrypts the message if needed. In this case, it checks if there
is only one recepient. Then the message is sent by calling mail : :sending() function
(see 29.1.2, page 264).

IN :

1. msg header (+) : ref(MIME : :Head) - message header

2. msg body (+) : message body

3. from (+) : message from

4. rcpt (+) : ref(SCALAR) | ref(ARRAY) - message recepients (ref(SCALAR) for
encryption)

5. robot (+) : robot

6. encrypt : ’smime crypted’ the mail is encrypted with smime | undef - no en-
cryption

OUT : 1 - sending by calling smtpto (sendmail) | 0 - sending by push in spool | undef

sending()

Signs the message according to $sign mode. Chooses sending mode according to
context. If $send spool global variable is empty, the message is sent by calling
mail : :smtpto() function (see 29.1.2, page 265) else the message is written in spool
$send spool in order to be handled by sympa.pl process (because only this is allowed
to make a fork). When the message is pushed in spool, these mail headers are added :
– “X-Sympa-To :” : recepients
– “X-Sympa-From :” : from
– “X-Sympa-Checksum :” : to check allowed program to push in spool
A message pushed in spool like this will be handled later by sympa : :DoSendMessage()
function (see 29.3, page 279)

IN :

1. msg (+) : ref(MIME : :Entity) | string - message to send

2. rcpt (+) : ref(SCALAR) | ref(ARRAY) - recepients (for SMTP : ”RCPT To :”
field)

3. from (+) : for SMTP : ”MAIL From :” field | for spool sending : ”X-Sympa-
From” field

4. robot (+) : robot

5. listname : listname | ”
6. sign mode (+) : ’smime’ | ’none’for signing

7. sympa email : for the file name for spool sending

OUT : 1 - sending by calling smtpto() (sendmail) | 0 - sending by pushing in spool |
undef

29.2. LIST.PM 265

smtpto()

Calls to sendmail for the recipients given as argument by making a fork and an exec.
Before, waits for number of children process < number allowed by sympa.conf by
calling mail : :reaper() function (see 29.1.1, page ??).

IN :

1. from (+) : SMTP ”MAIL From :” field

2. rcpt (+) : ref(SCALAR)) | ref(ARRAY) - SMTP ”RCPT To :” field

3. robot (+) : robot

OUT : mail : :$fh - file handle on opened file for ouput, for SMTP ”DATA” field |
undef

29.2 List.pm

This module includes list processing functions.

Here are described functions about :
– Message distribution in a list
– Sending using templates
– Service messages
– Notification message
– Topic messages
– Scenario evaluation
Follows a description of structure and access on list parameters.

29.2.1 Functions for message distribution

distribute message(), send msg(), send msg digest().

These functions are used to message distribution in a list.

distribute msg()

Prepares and distributes a message to a list :
– updates the list stats
– Loads information from message topic file if exists and adds X-Sympa-Topic header
– hides the sender if the list is anonymoused (list config : anonymous sender) and

changes name of msg topic file if exists.

266 CHAPITRE 29. INTERNALS

– adds custom subject if necessary (list config : custom subject)
– archives the message
– changes the reply-to header if necessary (list config : reply to header)
– removes unwanted headers if present (config : remove headers))
– adds useful headers (X-Loop,X-Sequence,Errors-to,Precedence,X-no-archive - list

config : custom header)
– adds RFC 2919 header field (List-Id) and RFC 2369 header fields (list config :

rfc2369 header fields)
– stores message in digest if the list accepts digest mode (encrypted message can’t be

included in digest)
– sends the message by calling List : :send msg() (see 29.2.1, page 266).
IN :

1. self (+) : ref(List) - the list concerned by distribution
2. message (+) : ref(Message) - the message to distribute

OUT : result of List : :send msg() function (number of sendmail process)

send msg()

This function is called by List : :distribute msg() (see 29.2.1, page 265) to select sub-
scribers according to their reception mode and to the “Content-Type” header field of
the message. Sending are grouped according to their reception mode :
– normal : add a footer if the message is not protected (then the message is “altered”)

In a message topic context, selects only one who are subscribed to the topic of the
message to distribute (calls to select subcribers for topic(), see ??, page ??).

– notice
– txt : add a footer
– html : add a footer
– urlize : add a footer and create an urlize directory for Web access
The message is sent by calling List : :mail message() (see 29.1.1, page 262). If the
message is “smime crypted” and the user has not got any certificate, a message service
is sent to him.

IN :
1. self (+) : ref(List) - the list concerned by distribution
2. message (+) : ref(Message) - the message to distribute

OUT : $numsmtp : addition of mail : :mail message() function results (= number of
sendmail process) | undef

send msg digest()

Sends a digest message to the list subscribers with reception digest, digestplain or sum-
mary : it creates the list of subscribers in various digest modes and then creates the list
of messages. Finally sending to subscribers is done by calling List : :send file() func-
tion (see 29.2.2, page 267) with mail template “digest”, “digestplain” or “summary”.

29.2. LIST.PM 267

IN :

1. self (+) : ref(List) - the concerned list

OUT :
– 1 if sending
– 0 if no subscriber for sending digest, digestplain or summary
– undef

29.2.2 Functions for template sending

send file(), send global file().

These functions are used by others to send files. These files are made from template
given in parameters.

send file()

Sends a message to a user, relative to a list. It finds the $tpl.tt2 file to make the message.
If the list has a key and a certificat and if openssl is in the configuration, the message
is signed. The parsing is done with variable $data set up first with parameter $context
and then with configuration, here are set keys :
– if $who=SCALAR then

– user.password
– if $user key is not defined in $context then user.email(:= $who), user.lang

(:= list lang) and if the user is in DB then user.attributes (:= attributes in
DB user table) are defined

– if $who is subscriber of $self then subscriber.date
subscriber.update date and if exists then subscriber.bounce
subscriber.first bounce are defined

– return path : used for SMTP “MAIL From” field or ”X-Sympa-From :” field
– lang : the user lang or list lang or robot lang
– fromlist : ”From :” field, pointed on list
– from : ”From :” field, pointed on list if no defined in $context
– replyto : if openssl is is sympa.conf and the list has a key (’private key’) and a

certificat (’cert.pem’) in its directory
– boundary : boundary for multipart message if no contained in $context
– conf.email conf.host conf.sympa conf.request conf.listmaster
conf.wwsympa url conf.title : updated with robot config

– list.lang list.name list.domain list.host list.subject list.dir
list.owner(ref(ARRAY)) : updated with list config

The message is sent by calling mail : :mail file() function (see 29.1.1, page 262).

IN :

1. self (+) : ref(List)

2. tpl (+) : template file name without .tt2 extension ($tpl.tt2)

268 CHAPITRE 29. INTERNALS

3. who (+) : SCALAR | ref(ARRAY) - recepient(s)
4. robot (+) : robot
5. context : ref(HASH) - for the $data set up

OUT : 1 | undef

send global file()

Sends a message to a user not relative to a list. It finds the $tpl.tt2 file to make the
message. The parsing is done with variable $data set up first with parameter $context
and then with configuration, here are set keys :
– user.password user.lang
– if $user key is not defined in $context then user.email (:= $who)
– return path : used for SMTP “MAIL From” field or ”X-Sympa-From :” field
– lang : the user lang or robot lang
– from : ”From :” field, pointed on SYMPA if no defined in $context
– boundary : boundary for multipart message if no defined in $context
– conf.email conf.host conf.sympa conf.request conf.listmaster
conf.wwsympa url conf.title : updated with robot config

– conf.version : Sympa version
– robot domain : the robot
The message is sent by calling mail : :mail file() function (see 29.1.1, page 262).

IN :
1. tpl (+) : template file name (filename.tt2), without .tt2 extension
2. who (+) : SCALAR | ref(ARRAY) - recepient(s)
3. robot (+) : robot
4. context : ref(HASH) - for the $data set up

OUT : 1 | undef

29.2.3 Functions for service messages

archive send(), send to editor(), request auth(), send auth().

These functions are used to send services messgase, correponding to a result of a com-
mand.

archive send()

Sends an archive file ($file) to $who. The archive is a text file, independant from web
archives. It checks if the list is archived. Sending is done by callingList : :send file()
(see 29.2.2, page 267) with mail template “archive”.

29.2. LIST.PM 269

IN :

1. self (+) : ref(List) - the concerned list

2. who (+) : recepient

3. file (+) : name of the archive file to send

OUT : - | undef

send to editor()

Sends a message to the list editor for a request concerning a message to distribute. The
message awaiting for moderation is named with a key and is set in the spool queuemod.
The key is a reference on the message for editor. The message for the editor is sent by
calling List : :send file() (see 29.2.2, page 267) with mail template “moderate”. In
msg topic context, the editor is asked to tag the message.

IN :

1. self (+) : ref(List) - the concerned list

2. method : ’md5’ - for ”editorkey” | ’smtp’ - for ”editor”

3. message (+) : ref(Message) - the message to moderate

OUT : $modkey - the moderation key for naming message waiting for moderation in
spool queuemod. | undef

request auth()

Sends an authentification request for a requested command. The authentification re-
quest contains the command to be send next and it is authentified by a key. The message
is sent to user by calling List : :send file() (see 29.2.2, page 267) with mail template
“request auth”.

IN :

1. self : ref(List) not required if $cmd = “remind”.

2. email(+) : recepient, the requesting command user

3. cmd :
– if $self then ’signoff’ | ’subscribe’ | ’add’ | ’del’ | ’remind’
– else ’remind’

4. robot (+) : robot

5. param : ARRAY
– 0 : used if $cmd =’subscribe’ | ’add’ | ’del’ | ’invite’
– 1 : used if $cmd =’add’

OUT : 1 | undef

270 CHAPITRE 29. INTERNALS

send auth()

Sends an authentifiaction request for a message sent for distribution. The message for
distribution is copied in the authqueue spool to wait for confirmation by its sender . This
message is named with a key. The request is sent to user by calling List : :send file()
(see 29.2.2, page 267) with mail template “send auth”. In msg topic context, the sender
is asked to tag his message.

IN :

1. self(+) : ref(List) - the concerned list

2. message(+) : ref(Message) - the message to confirm

OUT : $modkey, the key for naming message waiting for confirmation in spool queue-
mod. | undef

29.2.4 Functions for message notification

send notify to listmaster(), send notify to owner(), send notify to editor(),
send notify to user().

These functions are used to notify listmaster, list owner, list editor or user about events.

send notify to listmaster()

Sends a notice to listmaster by parsing “listmaster notification” template. The tem-
plate makes a specified or a generic treatement according to variable $param.type (:=
$operation parameter). The message is sent by calling List : :send file() (see 29.2.2,
page 267) or List : :send global file() (see 29.2.2, page 268) according to the context :
global or list context. Available variables for the template are set up by this function,
by $param parameter and by List : :send global file() or List : :send file().

IN :

1. operation (+) : notification type, corresponds to $type in the template

2. robot (+) : robot

3. param (+) : ref(HASH) | ref (ARRAY) - values for variable used in the template :
– if ref(HASH) then variables used in the template are keys of this HASH. These

following keys are required in the function, according to $operation value :
– ’listname’(+) if $operation=(’request list creation’ | ’automa-

tic bounce management’)
– if ref(ARRAY) then variables used in template are named as : $param0, $pa-

ram1, $param2, ...

OUT : 1 | undef

29.2. LIST.PM 271

send notify to owner()

Sends a notice to list owner(s) by parsing “listowner notification” template. The tem-
plate makes a specified or a generic treatement according to variable $param.type (:=
$operation parameter). The message is sent by calling List : :send file() (see 29.2.2,
page 267). Available variables for the template are set up by this function, by $param
parameter and by List : :send file().

IN :
1. self (+) : ref(List) - the list for owner notification
2. operation (+) : notification type, corresponds to $type in the template
3. param (+) : ref(HASH) | ref (ARRAY) - values for variable used in the template :

– if ref(HASH) then variables used in the template are keys of this HASH.
– if ref(ARRAY) then variables used in template are named as : $param0, $pa-

ram1, $param2, ...

OUT : 1 | undef

send notify to editor()

Sends a notice to list editor(s) by parsing “listeditor notification” template. The tem-
plate makes a specified or a generic treatement according to variable $param.type (:=
$operation parameter). The message is sent by calling List : :send file() (see 29.2.2,
page 267). Available variables for the template are set up by this function, by $param
parameter and by List : :send file().

IN :
1. self (+) : ref(List) - the list for editor notification
2. operation (+) : notification type, corresponds to $type in the template
3. param (+) : ref(HASH) | ref (ARRAY) - values for variable used in the template :

– if ref(HASH) then variables used in the template are keys of this HASH.
– if ref(ARRAY) then variables used in template are named as : $param0, $pa-

ram1, $param2, ...

OUT : 1 | undef

send notify to user()

Sends a notice to a user by parsing “user notification” template. The template makes a
specified or a generic treatement according to variable $param.type (:= with $operation
parameter). The message is sent by calling List : :send file() (see 29.2.2, page 267).
Available variables for the template are set up by this function, by $param parameter
and by List : :send file().

272 CHAPITRE 29. INTERNALS

IN :

1. self (+) : ref(List) - the list for owner notification

2. operation (+) : notification type, corresponds to $type in the template

3. user (+) : user email to notify

4. param (+) : ref(HASH) | ref (ARRAY) - values for variable used in the template :
– if ref(HASH) then variables used in the template are keys of this HASH.
– if ref(ARRAY) then variables used in template are named as : $param0, $pa-

ram1, $param2, ...

OUT : 1 | undef

29.2.5 Functions for topic messages

is there msg topic(), is available msg topic(), get available msg topic(),
is msg topic tagging required, automatic tag(), compute topic(), tag topic(),
load msg topic file(), modifying msg topic for subscribers(), se-
lect subscribers for topic().

These functions are used to manages message topics.

N.B. : There is some exception to use some parameters : msg topic.keywords for list
parameters and topics subscriber for subscribers options in the DB table. These pa-
rameters are used as string splitted by ’,’ but to access to each one, use the function
tools : :get array from splitted string() (see 29.7, page 297) allows to access the enu-
meration.

is there msg topic()

Tests if some message topic are defined (msg topic list parameter, see ??, page ??).

IN : self (+) : ref(List)

OUT : 1 - some msg topic are defined | 0 - no msg topic

is available msg topic()

Checks for a topic if it is available in the list : look foreach msg topic.name list
parameter (see ??, page ??).

IN :

29.2. LIST.PM 273

1. self (+) : ref(List)

2. topic (+) : the name of the requested topic

OUT : topic if it is available | undef

get available msg topic()

Returns an array of available message topics (msg topic.name list parameter, see ??,
page ??).

IN : self (+) : ref(List)

OUT : ref(ARRAY)

is msg topic tagging required()

Returns if the message must be tagged or not (msg topic tagging list parameter set
to ’required’, see ??, page ??).

IN : self (+) : ref(List)

OUT : 1 - the message must be tagged | 0 - the msg can be no tagged

automatic tag()

Computes topic(s) (with compute topic() function) and tags the message (with
tag topic() function) if there are some topics defined.

IN :

1. self (+) : ref(List)

2. msg (+) : ref(MIME : :Entity)- the message to tag

3. robot (+) : robot

OUT : list of tagged topic : strings separated by ’,’. It can be empty. | undef

compute topic()

Computes topic(s) of the message. If the message is in a thread, topic is got from
the previous message else topic is got from applying a regexp on the subject and/or

274 CHAPITRE 29. INTERNALS

the body of the message (msg topic keywords apply on list parameter, see??,
page ??). Regexp is based on msg topic.keywords list parameters (See ??, page ??).

IN :

1. self (+) : ref(List)

2. msg (+) : ref(MIME : :Entity)- the message to tag

OUT : list of computed topic : strings separated by ’,’. It can be empty.

tag topic()

Tags the message by creating its topic information file in the
/usr/local/sympa-os/spool/topic/ spool. The file contains the topic list
and the method used to tag the message. Here is the format :

TOPIC topicname,...
METHOD editor|sender|auto

IN :

1. self (+) : ref(List)

2. msg id (+) : string - the message ID of the message to tag

3. topic list (+) : the list of topics (strings splitted by ’,’)

4. method (+) : ’auto’ |’editor’|’sender’ - the method used for tagging

OUT : name of the created topic information file (directory/listname.msg id) |
undef

load msg topic file()

Search and load msg topic file corresponding to the message ID
(directory/listname.msg id). It returns information contained inside.

IN :

1. self (+) : ref(List)

2. msg id (+) : the message ID

3. robot (+) : the robot

OUT : undef | ref(HASH), keys are :
– topic : list of topics (strings separated by ’,’)
– method : ’auto’ |’editor’|’sender’ - the method used for tagging
– msg id : message ID of the tagged message
– filename : name of the file

29.2. LIST.PM 275

modifying msg topic for subscribers()

Deletes topics of subscriber that does not exist anymore and send a notify to concerned
subscribers. (Makes a diff on msg topic parameter between the list configuration before
modification and a new state by calling tools : :diff on arrays() function, see 29.7,
page 298). This function is used by wwsympa : :do edit list().

IN :

1. self (+) : ref(List) - the concerned list before modification

2. new msg topic (+) : ref(ARRAY) - new state of msg topic parameters

OUT :

1. 1 if some subscriber topics have been deleted

2. 0 else

select subscribers for topic()

Selects subscribers that are subscribed to one or more topic appearing in the topic
list incoming when their reception mode is ’mail’, and selects the other subscribers
(reception mode different from ’mail’). This function is used by List : :send msg()
function during message diffusion (see 29.2.1, page 266).

IN :

1. self (+) : ref(List)

2. string topic (+) : string splitted by ’,’ - the topic list

3. subscribers (+) : ref(ARRAY) - list of subscriber emails

OUT : ARRAY - list of selected subscribers

29.2.6 Scenario evaluation

The following function is used to evaluate scenario file “<action>.<parameter value>”,
where <action>action corresponds to a configuration parameter for an action and
<parameter value> corresponds to its value.

request action()

Return the action to perform for one sender using one authentication method to perform
an operation

IN :

276 CHAPITRE 29. INTERNALS

1. operation (+) : SCALAR - the requested action corresponding to config para-
meter

2. auth method (+) : ’smtp’|’md5’|’pgp’|’smime’
3. robot (+) : robot
4. context () : ref(HASH) - contains value to instantiate scenario variables (hash

keys)
5. debug () : boolean - if true adds keys ’condition’ and ’auth method’ to the retur-

ned hash.
OUT : undef | ref(HASH) with keys :
– action : ’do it’|’reject’|’request auth’|’owner’|’editor’|’editorkey’|’listmaster’
– reason : ’value’ if action == ’reject’ in scenario and if there is reject(reason=’value’)

to match a key in mail tt2/authorization reject.tt2. This is used in errors reports (see
??, page ??)

– tt2 : template name if action == ’reject’ in scenario and there is re-
ject(tt2=’template name’).

– condition : the checked condition.
– auth method : the checked auth method.

29.2.7 Structure and access to list configuration parameters

List parameters are representated in the list configuration file, in the list object
(list->{’admin’}) and on the Web interface. Here are translation and access func-
tions :

other (3)
(1)−→ ↑ (5)−→

CONFIG FILE LIST OBJECT WEB INTERFACE
←− (2) (4) ←− (6)

1. Loading file in memory :
List::_load_admin_file(),_load_include_admin_user_file(),_load_list_param()

2. Saving list configuration in file :
List::_save_admin_file(),_save_list_param()

3. Tools to get parameter values :
List::get_param_value(),_get_param_value_anywhere(),_get_single_param_value()

4. Tools to initialize list parameter with defaults :
List::_apply_default()

5. To present list parameters on the web interface :
wwsympa::do_edit_list_request(),_prepare_edit_form(),_prepare_data()

6. To get updates on list parameters from the web interface :
wwsympa::do_edit_list(),_check_new_value

List parameters can be simple or composed in paragraph, they can be unique or multiple
and they can singlevalued or multivalued. Here are the different kinds of parameters and
an exemple :

29.3. SYMPA.PL 277

parameters SIMPLE COMPOSED
SINGLE singlevalued (a) (b)

lang archiv.period
multivalued (c) (d)

topics available user option.reception
MULTIPLE singlevalued (e) (f)

include list owner.email
multi values not defined not defined

Here are these list parameters format in list configuration file in front of perl represen-
tation in memory :

List Configuration FILE $list->{’admin’}
(a) param value ’scalar’
(b) param

p1 val1 ’HASH→scalar’
p2 val2

(c) param val1,val2,val3 ’ARRAY(scalar & split char)’
(d) param

p1 val11, val12, val13 ’HASH→ARRAY(scalar & split char)’
p2 val21, val22, val23

(e) param val1 ’ARRAY(scalar)’
param val2

(d) param
p1 val11 ’ARRAY(HASH→scalar)’
p2 val12

param
p1 val21
p2 val22

29.3 sympa.pl

This is the main script ; it runs as a daemon and does the messages/commands pro-
cessing. It uses these funstions : DoFile(), DoMessage(), DoCommand(), DoSendMes-
sage(), DoForward(), SendDigest(), CleanSpool(), sigterm(), sighup().

Concerning reports about message distribution, function List : :send file() (see 29.2.2,
page 267) or List : :send global file() (see 29.2.2, page 268) is called with mail tem-
plate “message report”. Concernong reports about commands, it is the mail template
“command report”.

278 CHAPITRE 29. INTERNALS

DoFile()

Handles a received file : function called by the sympa.pl main loop in order to process
files contained in the queue spool. The file is encapsulated in a Message object not to
alter it. Then the file is read, the header and the body of the message are separeted. Then
the adequate function is called whether a command has been received or a message has
to be redistributed to a list.

So this function can call various functions :
– sympa : :DoMessage() for message distribution (see 29.3, page 278)
– sympa : :DoCommand() for command processing (see 29.3, page 278)
– sympa : :DoForward() for message forwarding to administrators (see 29.3, page 279)
– sympa : :DoSendMessage() for wwsympa message sending (see 29.3, page 279).
About command process a report can be sent by calling List : :send global file() (see
29.2.2, page 268) with template “command report”. For message report it is the tem-
plate “message report”.

IN : file(+) : the file to handle

OUT : $status - result of the called function | undef

DoMessage()

Handles a message sent to a list (Those that can make loop and those containing a
command are rejected). This function can call various functions :
– List : :distribute msg() for distribution (see 29.2.1, page 265)
– List : :send auth() for authentification or topic tagging by message sender(see 29.2.3,

page 270)
– List : :send to editor() for moderation or topic tagging by list moderator(see 29.2.3,

page 269).
– List : :automatic tag() for automatic topic tagging (see 29.2.5, page 273).
IN :

1. which(+) : ’list name@domain name - the concerned list
2. message(+) : ref(Message) - sent message
3. robot(+) : robot

OUT : 1 if everything went fine in order to remove the file from the queue | undef

DoCommand()

Handles a command sent to sympa. The command is parse by calling Com-
mands : :parse() (see 29.4.1, page 281).

IN :

29.3. SYMPA.PL 279

1. rcpt : recepient | <listname>-<subscribe|unsubscribe>

2. robot(+) : robot

3. msg(+) : ref(MIME : :Entity) - message containing the command

4. file(+) : file containing the message

OUT : $success - result of Command : :parse() function | undef.

DoSendMessage()

Sends a message pushed in spool by another process (ex : wwsympa.fcgi) by calling
function mail : :mail forward() (see 29.1.1, page 263).

IN :

1. msg(+) : ref(MIME : :Entity)

2. robot(+) : robot

OUT : 1 | undef

DoForward()

Handles a message sent to <listname>-editor : the list editor, <list>-request : the list
owner or the listmaster. The message is forwarded according to $function by calling
function mail : :mail forward() (see 29.1.1, page 263).

IN :

1. name(+) : list name if ($function != ’listmaster’)

2. function(+) : ’listmaster’ | ’request’ | ’editor’

3. robot(+) : robot

4. msg(+) : ref(MIME : :Entity)

OUT : 1 | undef

SendDigest()

Reads the queuedigest spool and send old digests to the subscribers with the digest
option by calling List : :send msg digest() function mail : :mail forward() (see 29.2.1,
page 266).

IN : - OUT : - | undef

280 CHAPITRE 29. INTERNALS

CleanSpool()

Cleans old files from spool $spool dir older than $clean delay.

IN :

1. spool dir(+) : the spool directory

2. clean delay(+) : the delay in days

OUT : 1

sigterm()

This function is called when a signal -TERM is received by sympa.pl. It just changes
the value of $signal loop variable in order to stop sympa.pl after endding its message
distribution if in progress. (see 4.3, page 37)

IN : - OUT : -

sighup()

This function is called when a signal -HUP is received by sympa.pl. It changes the
value of $signal loop variable and switchs of the ”–mail” (see 4.3, page 37) logging
option and continues current task.

IN : - OUT : -

29.4 Commands.pm

This module does the mail commands processing.

29.4.1 Commands processing

parse(), add(), del(), subscribe(), signoff(), invite(), last(), index(), getfile(), confirm(),
set(), distribute(), reject(), modindex(), review(), verify(), remind(), info(), stats(),
help(), lists(), which(), finished().

29.4. COMMANDS.PM 281

parse()

Parses the command line and calls the adequate subroutine (following functions) with
the arguments of the command. This function is called by sympa : :DoCommand() (see
29.3, page 278).

IN :
1. sender(+) : the command sender
2. robot(+) : robot
3. i(+) : command line
4. sign mod : ’smime’ | undef

OUT : ’unknown cmd’ | $status - command process result

add()

Adds a user to a list (requested by another user), and can send acknowledgements. New
subscriber can be notified by sending template ’welcome’.

IN :
1. what(+) : command parameters : listname, email and comments eventually
2. robot(+) : robot
3. sign mod : ’smime’ | undef - authentification

OUT : ’unknown list’ | ’wrong auth’ | ’not allowed’ | 1 | undef

del()

Removes a user to a list (requested by another user), and can send acknowledgements.
Unsubscriber can be notified by sending template ’removed’.

IN :
1. what(+) : command parameters : listname and email
2. robot(+) : robot
3. sign mod : ’smime’ | undef - authentification

OUT : ’unknown list’ | ’wrong auth’ | ’not allowed’ | 1

subscribe()

Subscribes a user to a list. New subscriber can be notified by sending him template
’welcome’.

282 CHAPITRE 29. INTERNALS

IN :

1. what(+) : command parameters : listname and comments eventually

2. robot(+) : robot

3. sign mod : ’smime’ | undef - authentification

OUT : ’unknown list’ | ’wrong auth’ | ’not allowed’ | 1 | undef

signoff()

Unsubscribes a user from a list. He can be notified by sending him template ’bye’.

IN :

1. which(+) : command parameters : listname and email

2. robot(+) : robot

3. sign mod : ’smime’ | undef - authentification

OUT : ’syntax error’ | ’unknown list’ | ’wrong auth’ | ’not allowed’ | 1 | undef

invite()

Invites someone to subscribe to a list by sending him the template ’invite’.

IN :

1. what(+) : command parameters : listname, email and comments

2. robot(+) : robot

3. sign mod : ’smime’ | undef - authentification

OUT : ’unknown list’ | ’wrong auth’ | ’not allowed’ | 1 | undef

last()

Sends back the last archive file by calling List : :archive send() function (see 29.2.3,
page 268).

IN :

1. which(+) : listname

2. robot(+) : robot

OUT : ’unknown list’ | ’no archive’ | ’not allowed’ | 1

29.4. COMMANDS.PM 283

index()

Sends the list of archived files of a list.

IN :
1. which(+) : listname
2. robot(+) : robot

OUT : ’unknown list’ | ’no archive’ | ’not allowed’ | 1

getfile()

Sends back the requested archive file by calling List : :archive send() function (see
29.2.3, page 268).

IN :
1. which(+) : commands parameters : listname and filename(archive file)
2. robot(+) : robot

OUT : ’unknown list’ | ’no archive’ | ’not allowed’ | 1

confirm()

Confirms the authentification of a message for its distribution on a list by calling
function List : :distribute msg() for distribution (see 29.2.1, page 265) or by calling
List : :send to editor() for moderation (see ??, page ??).

IN :
1. what(+) : authentification key (command parameter)
2. robot(+) : robot

OUT : ’wrong auth’ | ’msg not found’ | 1 | undef

set()

Changes subscription options (reception or visibility)

IN :
1. what(+) : command parameters : listname and reception mode

(digest|digestplain|nomail|normal...) or visibility mode(conceal|noconceal).
2. robot(+) : robot

OUT : ’syntax error’ | ’unknown list’ | ’not allowed’ | ’failed’ | 1

284 CHAPITRE 29. INTERNALS

distribute()

Distributes the broadcast of a validated moderated message.

IN :

1. what(+) : command parameters : listname and authentification key

2. robot(+) : robot

OUT : ’unknown list’ | ’msg not found’ | 1 | undef

reject()

Refuses and deletes a moderated message. Rejected message sender can be notified by
sending him template ’reject’.

IN :

1. what(+) : command parameters : listname and authentification key

2. robot(+) : robot

OUT : ’unknown list’ | ’wrong auth’ | 1 | undef

modindex()

Sends a list of current messages to moderate of a list (look into spool queuemod) by
using template ’modindex’.

IN :

1. name(+) : listname

2. robot(+) : robot

OUT : ’unknown list’ | ’not allowed’ | ’no file’ | 1

review()

Sends the list of subscribers of a list to the requester by using template ’review’.

IN :

1. listname(+) : list name

2. robot(+) : robot

3. sign mod : ’smime’ | undef - authentification

OUT : ’unknown list’ | wrong auth | no subscribers | ’not allowed’ | 1 | undef

29.4. COMMANDS.PM 285

verify()

Verifies an S/MIME signature.

IN :

1. listname(+) : list name

2. robot(+) : robot

3. sign mod : ’smime’ | undef - authentification

OUT : 1

remind()

Sends a personal reminder to each subscriber of a list or of every list (if $which = *)
using template ’remind’ or ’global remind’.

IN :

1. which(+) : * | listname

2. robot(+) : robot

3. sign mod : ’smime’ | undef - authentification

OUT : ’syntax error’ | ’unknown list’ | ’wrong auth’ | ’not allowed’ | 1 | undef

info()

Sends the list information file to the requester by using template ’info report’.

IN :

1. listname(+) : name of concerned list

2. robot(+) : robot

3. sign mod : ’smime’ | undef - authentification

OUT : ’unknown list’ | ’wrong auth’ | ’not allowed’ | 1 | undef

stats()

Sends the statistics about a list using template ’stats report’.

IN :

1. listname(+) : list name

286 CHAPITRE 29. INTERNALS

2. robot(+) : robot

3. sign mod : ’smime’ | undef - authentification

OUT : ’unknown list’ | ’not allowed’ | 1 | undef

help()

Sends the help file for the software by using template ’helpfile’.

IN :

1. : ?

2. robot(+) : robot

OUT : 1 | undef

lists()

Sends back the list of public lists on this node by using template ’lists’.

IN :

1. : ?

2. robot(+) : robot

OUT : 1 | undef

which()

Sends back the list of lists that sender is subscribed to. If he is owner or editor, managed
lists are noticed. Message is sent by using template ’which’.

IN :

1. : ?

2. robot(+) : robot

OUT : 1

finished()

Called when ’quit’ command is found. It sends a notification to sender : no process will
be done after this line.

29.5. WWSYMPA.FCGI 287

IN : -

OUT : 1

29.4.2 tools for command processing

get auth method()

get auth method()

Called by processing command functions to return the authentification method and to
check the key if it is ’md5’ method.

IN :

1. cmd(+) : requesting command

2. email(+) : used to compute auth if needed in command

3. error(+) : ref(HASH) - keys are :
– type : $type for “message report” template parsing
– data : ref(HASH) for “message report” template parsing
– msg : for do log()

4. sign mod(+) : ’smime’ - smime authentification | undef - smtp or md5 authenti-
fication

5. list : ref(List) | undef - in a list context or not

OUT : ’smime’ | ’md5’ | ’smtp’ - authentification method if checking not failed | undef

29.5 wwsympa.fcgi

This script provides the web interface to Sympa.

do subscribe(), do signoff(), do add(), do del(), do change email(), do reject(),
do send mail(), do sendpasswd(), do remind(), do set(), do send me(),
do request topic(), do tag topic by sender().

do subscribe()

Subscribes a user to a list. New subscriber can be notified by sending him template
’welcome’.

288 CHAPITRE 29. INTERNALS

– IN : -
– OUT : ’subrequest’ | ’login’ | ’info’ | $in.previous action | undef

do signoff()

Unsubscribes a user from a list. The unsubscriber can be notified by sending him tem-
plate ’bye’.
– IN : -
– OUT : ’sigrequest’ | ’login’ | ’info’ | undef

do add()

Adds a user to a list (requested by another user) and can send acknowledgements. New
subscriber can be notified by sending him template ’welcome’.
– IN : -
– OUT : ’loginrequest’ | ($in.previous action || ’review’) | undef

do del()

Removes a user from a list (requested by another user) and can send acknowledge-
ments. Unsubscriber can be notified by sending template ’removed’.
– IN : -
– OUT : ’loginrequest’ | ($in.previous action || ’review’) | undef

do change email()

Changes a user’s email address in Sympa environment. Password can be send to user
by sending template ’sendpasswd’.
– IN : -
– OUT : ’1’ | ’pref’ | undef

do reject()

Refuses and deletes moderated messages. Rejected message senders are notified by
sending them template ’reject’.
– IN : -
– OUT : ’loginrequest’ | ’modindex’ | undef

29.5. WWSYMPA.FCGI 289

do distribute()

Distributes moderated messages by sending a command DISTRIBUTE to sympa.pl.
For it, it calls mail : :mail file() (see 29.1.1, page 262). As it is in a Web context, the
message will be set in spool. In a context of message topic, tags the message by calling
to function List : :tag topic() (see 29.2.5, page 274).
– IN : -
– OUT : ’loginrequest’ | ’modindex’ | undef

do modindex()

Allows a moderator to moderate a list of messages and documents and/or tag message
in message topic context.
– IN : -
– OUT : ’loginrequest’ | ’admin’ | 1 | undef

do viewmod()

Allows a moderator to moderate a message and/or tag message in message topic
context.
– IN : -
– OUT : ’loginrequest’ | 1 | undef

do send mail()

Sends a message to a list by the Web interface. It uses mail : :mail file() (see 29.1.1,
page 262) to do it. As it is in a Web context, the message will be set in spool.
– IN : -
– OUT : ’loginrequest’ | ’info’ | undef

do sendpasswd()

Sends a message to a user, containing his password, by sending him template ’send-
passwd’ list by the Web interface.
– IN : -
– OUT : ’loginrequest’ | ’info’ | undef

290 CHAPITRE 29. INTERNALS

do request topic()

Allows a sender to tag his mail in message topic context.
– IN : -
– OUT : ’loginrequest’ | 1 | undef

do tag topic by sender()

Tags a message by its sender by calling List : :tag topic() and allows its diffusion by
sending a command CONFIRM to sympa.pl.
– IN : -
– OUT : ’loginrequest’ | ’info’ | undef

do remind()

Sends a command remind to sympa.pl by calling mail : :mail file() (see 29.1.1,
page 262). As it is in a Web context, the message will be set in spool.
– IN : -
– OUT : ’loginrequest’ | ’admin’ | undef

do set()

Changes subscription options (reception or visibility)
– IN : -
– OUT : ’loginrequest’ | ’info’ | undef

do send me()

Sends a web archive message to a requesting user It calls mail : :mail forward() to do
it (see 29.1.1, page 263). As it is in a Web context, the message will be set in spool.
– IN : -
– OUT : ’arc’ | 1 | undef

29.6 report.pm

This module provides various tools for notification and error reports in every Sympa
interface (mail diffusion, mail command and web command).

29.6. REPORT.PM 291

For a requested service, there are four kinds of reports to users :
– success notification

when the action does not involve any specific mail report or else, the user is notified
of the well done of the processus.

– non authorization(auth)
a user is not allowed to perform an action, Sympa provides rea-
son of rejecting. The template used to provides this information is
mail tt2/authorization reject.tt2. It contains a list of reasons, indexed by
keywords that are mentioned in reject action scenario (see 14.1, page 144)

– user error(user)
a error caused by the user, the user is informed about the error reason

– internal server error(intern)
an error independent from the user, the user is succintly informed about the er-
ror reason but a mail with more information is sent to listmaster using template
mail tt2/listmaster notification.tt2(If it is not necessary, keyword used
is ’intern quiet’.

For other reports than non authorizations templates used depends on the interface :
– message diffusion : mail tt2/message report.tt2
– mail commands : mail tt2/command report.tt2
– web commands : web tt2/notice.tt2 for positive notifications and
web tt2/error.tt2 for rejects.

29.6.1 Message diffusion

These reports use template mail tt2/message report.tt2 and there are two func-
tions : reject report msg() and notice report msg().

reject report msg()

Sends a notification to the user about an error rejecting his requested message diffusion.

IN :
1. type(+) : ’intern’|’intern quiet’|’user’|’auth’ - the error type
2. error : SCALAR - depends on $type :

– ’intern’ : string error sent to listmaster
– ’user’ : $entry in message report.tt2
– ’auth’ : $reason in authorization reject.tt2

3. user(+) : SCALAR - the user to notify
4. param : ref(HASH) - for variable instantiation message report.tt2 (key

msgid(+) is required if type == ’intern’)
5. robot : SCALAR - robot
6. msg string : SCALAR - rejected message
7. list : ref(List) - in a list context

OUT : 1 | undef

292 CHAPITRE 29. INTERNALS

notice report msg()

Sends a notification to the user about a success about his requested message diffusion.

IN :

1. entry(+) : $entry in message report.tt2

2. user(+) : SCALAR - the user to notify

3. param : ref(HASH) - for variable instantiation message report.tt2

4. robot(+) : SCALAR - robot

5. list : ref(List) - in a list context

OUT : 1 | undef

29.6.2 Mail commands

A mail can contains many commands. Errors and notices are stored in module
global arrays before sending (intern error cmd, user error cmd, global error cmd,
auth reject cmd, notice cmd). Moreover used errors here we can have global errors on
mail containing commands, so there is a function for that. These reports use template
mail tt2/command report.tt2 and there are many functions :

init report cmd()

Inits global arrays for mail command reports.

IN : -

OUT : -

is there any report cmd()

Looks for some mail command reports in one of global arrays.

IN : -

OUT : 1 if there are some reports to send

29.6. REPORT.PM 293

global report cmd()

Concerns global reports of mail commands. There are many uses cases :

1. internal server error for a differed sending at the end of the mail processing :
– global report cmd(’intern’,$error,$data,$sender,$robot)
– global report cmd(’intern quiet’,$error,$data) : the listmaster

won’t be noticied

2. internal server error for sending every reports directly (by calling
send report cmd()) :
– global report cmd(’intern’,$error,$data,$sender,$robot,1)
– global report cmd(’intern quiet’,$error,$data,$sender,$robot,1) :

the listmaster won’t be noticied

3. user error for a differed sending at the end of the mail processing :
global report cmd(’user’,$error,$data

4. user error for sending every reports directly (by calling send report cmd()) :
global report cmd(’user’,$error,$data,$sender,$robot,1)

IN :

1. type(+) : ’intern’|’intern quiet’|’user’

2. error : SCALAR - depends on $type :
– ’intern’ : string error sent to listmaster
– ’user’ : $glob.entry in command report.tt2

3. data : ref(HASH) - for variable instantiation in command report.tt2

4. sender : SCALAR - the user to notify

5. robot : SCALAR - robot

6. now : BOOLEAN - send reports now if true

OUT : 1 | undef

reject report cmd()

Concerns reject reports of mail commands. These informations are sent at the end of
the mail processing. There are many uses cases :

1. internal server error :
– reject report cmd(’intern’,$error,$data,$cmd,$sender,$robot)
– reject report cmd(’intern quiet’,$error,$data,$cmd) : the list-

master won’t be noticied

2. user error :
reject report cmd(’user’,$error,$data,$cmd)

3. non authorization :
reject report cmd(’auth’,$error,$data,$cmd)

294 CHAPITRE 29. INTERNALS

IN :
1. type(+) : ’intern’|’intern quiet’|’user’|’auth’
2. error : SCALAR - depends on $type :

– ’intern’ : string error sent to listmaster
– ’user’ : $u err.entry in command report.tt2
– ’auth’ : $reason in authorization reject.tt2

3. data : ref(HASH) - for variable instantiation in command report.tt2

4. cmd : SCALAR - the rejected command, $xx.cmd in command report.tt2

5. sender : SCALAR - the user to notify
6. robot : SCALAR - robot

OUT : 1 | undef

notice report cmd()

Concerns positive notices of mail commands. These informations are sent at the end of
the mail processing.

IN :
1. entry : $notice.entry in command report.tt2

2. data : ref(HASH) - for variable instantiation in command report.tt2

3. cmd : SCALAR - the rejected command, $xx.cmd in command report.tt2

OUT : 1 | undef

send report cmd()

Sends the template command report.tt2 to $sender with global arrays and then calls
to init report command.tt2 function. (It is used by sympa.pl at the end of mail
process if there are some reports in gloal arrays)

IN :
1. sender(+) : SCALAR - the user to notify
2. robot(+) : SCALAR - robot

OUT : 1

29.6.3 Web commands

It can have many errors and notices so they are stored in module global arrays before
html sending. (intern error web, user error web, auth reject web, notice web). These
reports use web tt2/notice.tt2 template for notices and web tt2/error.tt2 tem-
plate for rejects.

29.6. REPORT.PM 295

init report web()

Inits global arrays for web command reports.

IN : -

OUT : -

is there any reject report web()

Looks for some rejected web command reports in one of global arrays for reject.

IN : -

OUT : 1 if there are some reject reports to send (not notice)

get intern error web()

Return array of web intern error

IN : -

OUT : ref(ARRAY) - clone of intern error web

get user error web()

Return array of web user error

IN : -

OUT : ref(ARRAY) - clone of user error web

get auth reject web()

Return array of web authorisation reject

IN : -

296 CHAPITRE 29. INTERNALS

OUT : ref(ARRAY) - clone of auth reject web

get notice web()

Return array of web notice

IN : -

OUT : ref(ARRAY) - clone of notice web

reject report web()

Concerning reject reports of web commands, there are many uses cases :

1. internal server error :
– reject report web(’intern’,$error,$data,$action,$list,$user,$robot)
– reject report web(’intern quiet’,$error,$data,$action,$list) :

the listmaster won’t be noticied

2. user error :
reject report web(’user’,$error,$data,$action, $list)

3. non authorization :
reject report web(’auth’,$error,$data,$action, $list)

IN :

1. type(+) : ’intern’|’intern quiet’|’user’|’auth’

2. error(+) : SCALAR - depends on $type :
– ’intern’ : $error in listmaster notification.tt2 and possibly $i err.msg

in error.tt2
– ’intern quiet’ : possibly $i err.msg in error.tt2
– ’user’ : $u err.msg in error.tt2
– ’auth’ : $reason in authorization reject.tt2

3. data : ref(HASH) - for variable instantiation in notice.tt2

4. action(+) : SCALAR - the rejected actin, $xx.action in error.tt2, $action in
listmaster notification.tt2

5. list : ” | ref(List)

6. user : SCALAR - the user for listmaster notification

7. robot : SCALAR - robot for listmaster notification

OUT : 1 | undef

29.7. TOOLS.PL 297

notice report web()

Concerns positive notices of web commands.

IN :

1. msg : $notice.msg in notice.tt2

2. data : ref(HASH) - for variable instantiation in notice.tt2

3. action : SCALAR - the noticed command, $notice.cmd in notice.tt2

OUT : 1 | undef

29.7 tools.pl

This module provides various tools for Sympa.

checkcommand()

Checks for no command in the body of the message. If there are some command in it,
it returns true and sends a message to $sender by calling List : :send global file() (see
29.2.2, page 268) with mail template “message report”.

IN :

1. msg(+) : ref(MIME : :Entity) - the message to check

2. sender(+) : the message sender

3. robot(+) : robot

OUT :
– 1 if there are some command in the message
– 0 else

get array from splitted string()

Return an array made from a string splitted by ’,’. It removes spaces.

IN : string(+) : string to split

OUT : ref(ARRAY) -

298 CHAPITRE 29. INTERNALS

diff on arrays()

Makes set operation on arrays seen as set (with no double) :

IN :

1. A(+) : ref(ARRAY) - set

2. B(+) : ref(ARRAY) - set

OUT : ref(HASH) with keys :
– deleted : A \ B
– added : B \ A
– intersection : A ∩ B
– union : A ∪ B

clean msg id()

Cleans a msg id to use it without ’
n’, ’
s’, ¡ and ¿.

IN : msg id(+) : the message id

OUT : the clean msg id

clean email()

Lower-case it and remove leading and trailing spaces.

IN : msg id(+) : the email

OUT : the clean email

make tt2 include path()

Make an array of include path for tt2 parsing

IN :

1. robot(+) : SCALAR - the robotset

2. dir : SCALAR - directory ending each path

3. lang : SCALAR - for lang directories

29.8. MESSAGE.PM 299

4. list : ref(List) - for list directory

OUT : ref(ARRAY) - include tt2 path, respecting path priorities.

29.8 Message.pm

This module provides objects to encapsulate file message in order to prevent it from its
alteration for using signatures.

new()

Creates an object Message and initialize it :
– msg : ref(MIME : :Entity)
– altered if the message is altered
– filename : the file containing the message
– size : the message size
– sender : the first email address, in the ’From’ field
– decoded subject : the ’Subject’ field decoded by MIME : :Words : :de-

code mimewords
– subject charset : the charset used to encode the ’Subject’ field
– rcpt : the ’X-Sympa-To’ field
– list : ref(List) if it is a message no addressed to Sympa or a listmaster
– topic : the ’X-Sympa-Topic’ field.
– in a ’openssl’ context - decrypt message :

– smime crypted : ’smime crypted’ if it is in a ’openssl’ context
– orig msg : ref(MIME : :Entity) - crypted message
– msg : ref(MIME : :Entity) - decrypted message (see tools : :smime decrypt())
– msg as string : string - decrypted message (see tools : :smime decrypt())

– in a ’openssl’ context - check signature :
– protected : 1 if the message should not be altered
– smime signed : 1 if the message is signed
– smime subject : ref(HASH)if the message is signed - information on the signer

see tools : :smime parse cert().
IN :

1. pkg(+) : Message

2. file(+) : the message file

OUT : ref(Message) | undef

dump()

Dump the message object in the file descriptor $output

300 CHAPITRE 29. INTERNALS

IN :

1. self(+) : ref(Message)

2. output(+) : file descriptor

OUT : ’1’

add topic()

Adds the message topic in the Message object (topic’ and adds the ’X-Sympa-Topic’
field in the ref(MIME : :Entity) msg’.

IN :

1. self(+) : ref(Message)

2. topic(+) : string splitted by ’,’ - list of topic

OUT : ’1’

get topic()

Returns the topic(s) of the message

IN : self(+) : ref(Message)

OUT : ” if no message topic — string splitted by ’,’ if message topic

N.B. :
– (+) : required parameter, value must not be empty
– | : “or” for parameters value
– $: reference to code parameters or variables
– condition for parameter

Index

’intern quiet’ file, 291
(auth) file, 291
(intern) file, 291
(user) file, 291
- - add list familyname -

- robot robotname

- - input file
/path/to/list file.xml

option, 36
- - close family familyname - -

robot robotname option, 36
- - config config file option, 35
- - create list - - robot

robotname - - input file
/path/to/list file.xml

option, 35
- - debug option, 35
- - enable-secure option, 32
- - help option, 36
- - import listname option, 36
- - instanciate family

familyname robotname

- - input file
/path/to/family file.xml

option, 36
- - keepcopy recipient directory

option, 35
- - lang catalog option, 35
- - lowercase option, 36
- - mail option, 35
- - make alias file option, 36
- - modify list familyname

- - robot robotname

- - input file
/path/to/list file.xml

option, 36
- - prefix=PREFIX option, 31
- - sync include listaddress

option, 36
- - upgrade - - from=X - -to=Y

option, 36

- - version option, 36
- - with-bindir=DIR option, 31
- - with-cgidir=DIR option, 31
- - with-confdir=DIR option, 31
- - with-datadir=DIR option, 31
- - with-docdir=DIR option, 32
- - with-etcdir=DIR option, 32
- - with-expldir=DIR option, 31
- - with-group=LOGIN option, 32
- - with-iconsdir=DIR option, 31
- - with-initdir=DIR option, 32
- - with-libdir=DIR option, 31
- - with-libexecdir=DIR option, 31
- - with-localedir=DIR option, 32
- - with-lockdir=DIR option, 32
- - with-mandir=DIR option, 32
- - with-newaliases=FULLPATH op-

tion, 32
- - with-newaliases arg=ARGS op-

tion, 32
- - with-openssl=FULLPATH option,

32
- - with-perl=FULLPATH option, 32
- - with-piddir=DIR option, 32
- - with-postmap=FULLPATH option,

32
- - with-postmap arg=ARGS option,

32
- - with-sampledir=DIR option, 32
- - with-sbindir=DIR option, 31
- - with-scriptdir=DIR option, 32
- - with-sendmail aliases=ALIASFILE

option, 32
- - with-spooldir=DIR option, 32
- - with-user=LOGI option, 32
- - with-virtual aliases=ALIASFILE

option, 32
--mail option, 37
--with-initdir option, 36
-d option, 35
-f config file option, 35

301

302 INDEX

-h option, 36
-idle-timeout option, 91
-k recipient directory option, 35
-l catalog option, 35
-m option, 35
-v option, 36
./configure UNIX command, 42
.desc file, 234
/data structure.version file, 42, 43
/etc/aliases file, 45, 46, 48
/etc/mail/sympa aliases file, 47
/etc/mail/virtusertable file, 48
/etc/postfix/virtual.regexp file,

48
/etc/rc.d/init.d/ directory, 36
/etc/smrsh directory, 31
/etc/sudoers file, 94
/etc/sympa.conf file, 33
/etc/syslog.conf file, 33
/home/sympa-dev/etc/sympa.conf

file, 43
/usr/local/sympa-os directory, 21, 30
/usr/local/sympa-os/bin directory,

21, 42
/usr/local/sympa-os/bin/alias manager.pl

file, 47, 48
/usr/local/sympa-os/bin/alias manager.pl

add mylistcru.fr file, 47
/usr/local/sympa-os/bin/etc direc-

tory, 21, 156, 184
~/usr/local/sympa-os/bin/etc/ca-

bundle.crt file, 251
/usr/local/sympa-os/bin/etc/create list templates

directory, 183
/usr/local/sympa-os/bin/etc/edit list.conf

file, 184
/usr/local/sympa-os/bin/etc/global task models

directory, 165
/usr/local/sympa-os/bin/etc/global task models/

directory, 165
/usr/local/sympa-os/bin/etc/list task models

directory, 165
/usr/local/sympa-os/bin/etc/list task models/

directory, 165
/usr/local/sympa-os/bin/etc/mail tt2/<action>.tt2

directory, 160
/usr/local/sympa-os/bin/etc/mail tt2/<file>.tt2

directory, 173
/usr/local/sympa-os/bin/etc/mail tt2/<lang>/<action>.tt2

directory, 160

/usr/local/sympa-os/bin/etc/scenari
directory, 143

/usr/local/sympa-os/bin/etc/scenari/
directory, 146

/usr/local/sympa-os/bin/p12topem.pl
UNIX command, 253

/usr/local/sympa-os/bin/p12topem.pl
directory, 253

/usr/local/sympa-os/etc directory,
21, 22, 42, 55, 112, 156, 163,
184, 205

/usr/local/sympa-os/etc/<robot>/scenari
directory, 146

/usr/local/sympa-os/etc/auth.conf
file, 132, 133

/usr/local/sympa-os/etc/create list templates
directory, 183

/usr/local/sympa-os/etc/create list templates/
directory, 21

/usr/local/sympa-os/etc/data sources/
directory, 22

/usr/local/sympa-os/etc/data sources/<file>.incl
directory, 172

/usr/local/sympa-os/etc/edit list.conf
file, 184

/usr/local/sympa-os/etc/families/
directory, 22

/usr/local/sympa-os/etc/global task models/
directory, 22, 165

/usr/local/sympa-os/etc/list task models/
directory, 22, 165

/usr/local/sympa-os/etc/mail tt2/
directory, 22

/usr/local/sympa-os/etc/mail tt2/<action>.tt2
directory, 160

/usr/local/sympa-os/etc/mail tt2/<file>.tt2
directory, 173

/usr/local/sympa-os/etc/mail tt2/<lang>/<action>.tt2
directory, 160

/usr/local/sympa-os/etc/mhonarc-ressources
directory, 99

/usr/local/sympa-os/etc/my.domain.org
directory, 22, 154

/usr/local/sympa-os/etc/my.domain.org/
file, 156

/usr/local/sympa-os/etc/my.domain.org/data sources/<file>.incl
directory, 172

/usr/local/sympa-os/etc/my.domain.org/families/
directory, 22

/usr/local/sympa-os/etc/my.domain.org/mail tt2/

INDEX 303

directory, 156
/usr/local/sympa-os/etc/my.domain.org/mail tt2/<action>.tt2

directory, 160
/usr/local/sympa-os/etc/my.domain.org/mail tt2/<lang>/<action>.tt2

directory, 160
/usr/local/sympa-os/etc/my.domain.org/robot.conf

file, 156
/usr/local/sympa-os/etc/my.domain.org/scenari

directory, 143
/usr/local/sympa-os/etc/my.domain.org/scenari/

directory, 21, 156
/usr/local/sympa-os/etc/my.domain.org/web tt2/

directory, 22, 155
/usr/local/sympa-os/etc/scenari

directory, 143, 146
/usr/local/sympa-os/etc/scenari/

directory, 21
/usr/local/sympa-os/etc/search filters/

directory, 147, 148
/usr/local/sympa-os/etc/sympa-creation.pid

file, 57
/usr/local/sympa-os/etc/sympa.conf

file, 17, 23, 43, 49, 154, 155,
200, 218

/usr/local/sympa-os/etc/sympa.pid
file, 56

/usr/local/sympa-os/etc/templates/
directory, 22

~/usr/local/sympa-os/etc/web tt2
directory, 162

/usr/local/sympa-os/etc/web tt2/
directory, 22

/usr/local/sympa-os/etc/wws templates/
directory, 22

/usr/local/sympa-os/etc/wwsympa.conf
file, 23

/usr/local/sympa-os/etc/your.virtual.domain/robot.conf
file, 154

/usr/local/sympa-os/expl directory,
22, 43, 55

/usr/local/sympa-os/expl/X509-user-certs
directory, 22

/usr/local/sympa-os/expl/X509-user-certs/
directory, 251, 254

/usr/local/sympa-os/expl/<list
name>/ directory, 165

/usr/local/sympa-os/expl/<list>/mail tt2/<action>.tt2
directory, 160

/usr/local/sympa-os/expl/<list>/mail tt2/<lang>/<action>.tt2
directory, 160

/usr/local/sympa-os/expl/<list>/scenari
directory, 143

/usr/local/sympa-os/expl/<robot>/<list>/scenari
directory, 146

/usr/local/sympa-os/expl/my.domain.org
directory, 22

/usr/local/sympa-os/expl/my.domain.org/
directory, 156

/usr/local/sympa-os/expl/my.domain.org/mylist
directory, 22

/usr/local/sympa-os/expl/my.domain.org/mylist/config
file, 169

/usr/local/sympa-os/expl/my.domain.org/mylist/config.bin
file, 169

/usr/local/sympa-os/expl/mylist
directory, 22, 99

/usr/local/sympa-os/expl/mylist/archives/
directory, 177, 226

/usr/local/sympa-os/expl/mylist/config
file, 47, 169

/usr/local/sympa-os/expl/mylist/data sources/<file>.incl
directory, 172

/usr/local/sympa-os/expl/mylist/homepage
file, 172

/usr/local/sympa-os/expl/mylist/info
file, 172

/usr/local/sympa-os/expl/mylist/mail tt2/<file>.tt2
directory, 173

/usr/local/sympa-os/expl/mylist/message.footer
file, 176

/usr/local/sympa-os/expl/mylist/message.footer.mime
file, 220

/usr/local/sympa-os/expl/mylist/message.header
file, 176

/usr/local/sympa-os/expl/mylist/mhonarc-ressources
directory, 99

/usr/local/sympa-os/expl/mylist/private key
directory, 253

/usr/local/sympa-os/expl/mylist/scenari
directory, 22

/usr/local/sympa-os/expl/mylist/shared
directory, 233

/usr/local/sympa-os/expl/mylist/stats
file, 176

/usr/local/sympa-os/expl/mylist/subscribers
file, 171

/usr/local/sympa-os/expl/mylist/web tt2
directory, 162

/usr/local/sympa-os/expl/mylist/web tt2/
directory, 22

304 INDEX

/usr/local/sympa-os/expl/your.virtual.domain/
directory, 154

/usr/local/sympa-os/locale direc-
tory, 22, 65, 162

/usr/local/sympa-os/spool direc-
tory, 22, 62

/usr/local/sympa-os/spool/auth
directory, 62

/usr/local/sympa-os/spool/auth/
directory, 24

/usr/local/sympa-os/spool/automatic
directory, 196

/usr/local/sympa-os/spool/bounce
directory, 63

/usr/local/sympa-os/spool/bounce/
directory, 24, 241

/usr/local/sympa-os/spool/digest/
directory, 24

/usr/local/sympa-os/spool/distribute
directory, 62

/usr/local/sympa-os/spool/distribute/
directory, 24

/usr/local/sympa-os/spool/distribute/bad/
directory, 24

/usr/local/sympa-os/spool/mod/
directory, 24

/usr/local/sympa-os/spool/moderation
directory, 62

/usr/local/sympa-os/spool/msg di-
rectory, 62, 64, 197

/usr/local/sympa-os/spool/msg/
directory, 24

/usr/local/sympa-os/spool/msg/bad/
directory, 24

/usr/local/sympa-os/spool/outgoing
directory, 63, 100

/usr/local/sympa-os/spool/outgoing/
directory, 24, 100

/usr/local/sympa-os/spool/task
directory, 63

/usr/local/sympa-os/spool/task/
directory, 24

/usr/local/sympa-os/spool/tmp di-
rectory, 64

/usr/local/sympa-os/spool/tmp/antivirus
directory, 245

/usr/local/sympa-os/spool/topic
directory, 63

/usr/local/sympa-os/spool/topic/
directory, 24, 232, 274

/usr/local/sympa-os/src/ directory,
22

/var/lib/mysql/sympa/ directory, 43
<description> file, 182
<email> file, 182
<gecos> file, 182
<list> file, 182, 193, 194
<listname> file, 182
<owner multiple=’’1’’> file, 182
<owner multiple=’’1’’> <email>

... </email> </owner>
file, 182

<owner> file, 182
<owner include multiple=’’1’’>

<source> ... </source>
</owner include> file, 182

<type> file, 182, 183
$list->{’admin’} list parameter, 277
$numsmtp list parameter, 262, 266
$send spool list parameter, 263, 264
$sign mode list parameter, 264
service option, 35
<model name>.<model

version>.task file, 165

, 158
List-admin menu-> Archive

Management configuration
keyword, 100

A list parameter, 298
access list parameter, 226, 227
action list parameter, 224, 296, 297
active arc file, 107
active lists file, 107, 108
ADD mail command, 17, 173, 201, 212,

223, 256, 258
add list parameter, 213
admin table, 79
administrator, 17, 46
alias manager.pl file, 32, 47
aliases, 45, 46, 169
aliaswrapper file, 32, 48
altered list parameter, 299
anonymous headers fields configura-

tion keyword, 60
anonymous sender, 218
anonymous sender list parameter, 218
antivirus args configuration keyword,

77, 245

INDEX 305

antivirus notify configuration key-
word, 78

antivirus path configuration keyword,
77, 245

Apache, 37
apply list parameter, 218
arc path configuration keyword, 43
archive, 226
archive list parameter, 177, 226
Archive : :Zip perl module, 30
archive crypted msg list parameter,

227
archived.pl file, 23, 24, 94, 96, 99, 100
attrs list parameter, 207
attrs1 list parameter, 209
attrs2 list parameter, 209
auth list parameter, 223
auth.conf file, 23, 132
auth method list parameter, 276
authenticateRemoteAppAndRun confi-

guration keyword, 112
authentication, 65, 170, 223, 258
authorization reject.tt2 file, 291,

294, 296
automatic spool, 65
automatic list creation, 197
automatic list creation configura-

tion keyword, 54, 197
automatic list feature configura-

tion keyword, 54, 197
automatic list removal configura-

tion keyword, 55, 197
available-user-options, 221
available user options list parame-

ter, 221
avg configuration keyword, 59

B list parameter, 298
bg color configuration keyword, 52, 155
block list parameter, 263
block spams, 24
body list parameter, 262
bounce, 63
bounce list parameter, 70
bounce/ directory, 23
bounce delay configuration keyword,

69
bounce email prefix configuration

keyword, 69

bounce halt rate configuration key-
word, 70, 223

bounce path/mylist/email directory,
241

bounce score suscriber configura-
tion keyword, 68

bounce warn rate configuration key-
word, 70, 223

bounced.pl file, 23, 94, 96, 97, 241
bouncequeue file, 23, 31, 32, 47, 63, 241
bouncers level1 action configura-

tion keyword, 224
bouncers level1 rate configuration

keyword, 224
bouncers level2 rate configuration

keyword, 224
bouncerslevel1 list parameter, 69
bouncerslevel2 list parameter, 69
Bounces count configuration keyword,

242
boundary list parameter, 267, 268

cache list config configuration key-
word, 71, 169

cafile configuration keyword, 76, 251,
253

capath configuration keyword, 76, 251,
253

CAS-based authentication, 23
cert list parameter, 205
cert.pem configuration keyword, 253
CGI perl module, 29
Changelog file, 39
changes, 39
check perl modules.pl UNIX com-

mand, 29
chk cert expiration.daily.task

file, 254
chk cert expiration task configura-

tion keyword, 76
CipherSaber perl module, 30
clean delay list parameter, 280
clean delay queue configuration key-

word, 64
clean delay queueauth configuration

keyword, 65
clean delay queueautomatic confi-

guration keyword, 65
clean delay queuemod configuration

keyword, 64

306 INDEX

clean delay queuesubscribe confi-
guration keyword, 65

clean delay queuetopic configura-
tion keyword, 65

cmd list parameter, 269, 287, 294
color 0 configuration keyword, 51, 155
color 1 configuration keyword, 51
color 15 configuration keyword, 51
command report.tt2 file, 293, 294
Commands.pm, 280
commands : :add(), 281
commands : :confirm(), 283
commands : :del(), 281
commands : :distribute(), 284
commands : :finished(), 286
commands : :get auth method(), 287
commands : :help(), 286
commands : :index(), 283
commands : :info(), 285
commands : :invite(), 282
commands : :last(), 282, 283
commands : :lists(), 286
commands : :modindex(), 284
commands : :parse(), 281
commands : :reject(), 284
commands : :remind(), 285
commands : :review(), 284
commands : :set(), 283
commands : :signoff(), 282
commands : :stats(), 285
commands : :subscribe(), 281
commands : :verify(), 285
comment.tt2 file, 104
conf.email conf.host

conf.sympa conf.request
conf.listmaster
conf.wwsympa url
conf.title list parame-
ter, 267, 268

conf.version list parameter, 268
config file, 17, 71, 80, 179, 185, 199–

202, 226
config.bin file, 71
config.tt2 file, 188
config_bin file, 36
config changes file, 192, 194
configuration file, 49
configure UNIX command, 31, 36
CONFIRM mail command, 258
connect options list parameter, 206

context list parameter, 268, 276
cookie, 222
cookie configuration keyword, 53, 100,

140, 222
cookie list parameter, 222
cookie domain configuration keyword,

155
count file, 108, 109
CPAN, 28, 29
cpan update, 40
create db file, 80
create list configuration keyword, 54,

155, 184
create list.conf configuration key-

word, 184
crl update.daily.task file, 254
crl update task configuration key-

word, 77
Crypt : :CipherSaber file, 93
css path configuration keyword, 52, 155
css url configuration keyword, 52, 155
custom-header, 218
custom-subject, 219
custom header list parameter, 218
custom subject list parameter, 219

d edit list parameter, 217
d read list parameter, 216
daily cert expiration file, 254
dark color configuration keyword, 52,

155
data list parameter, 262, 287, 293, 294,

296, 297
data-inclusion-file, 172, 200, 202
data sources directory, 202
data structure.version file, 24
DB package, 29
db update, 41
db additional subscriber fields

configuration keyword, 74
db additional user fields configu-

ration keyword, 74
db env configuration keyword, 74
db env list parameter, 206
DB File perl module, 29
db host configuration keyword, 73, 92
db name configuration keyword, 43, 72,

92
db name list parameter, 206
db options configuration keyword, 73

INDEX 307

db passwd configuration keyword, 73,
90, 92

db port configuration keyword, 73
db port list parameter, 206
db timeout configuration keyword, 73
db type configuration keyword, 72, 92
db type list parameter, 205
db user configuration keyword, 73, 90,

92
DBD perl module, 17, 30
DBI perl module, 17, 30, 79, 80
debug list parameter, 276
decoded subject list parameter, 299
default-user-options, 221
default archive quota configuration

keyword, 61, 227
default bounce level1 rate configu-

ration keyword, 69
default bounce level2 rate configu-

ration keyword, 69
default home configuration keyword,

155
default list priority configuration

keyword, 72, 223
default remind task configuration

keyword, 70
default shared quota configuration

keyword, 61
default user options list parameter,

221
DEL mail command, 173, 213
del list parameter, 213
DELETE mail command, 17, 175, 201,

223, 258
digest, 62, 170, 220
digest list parameter, 171, 190, 220, 256
Digest-MD5 perl module, 29
digest max size configuration key-

word, 220
dir list parameter, 262, 298
directory/listname.msg id file, 274
DISTRIBUTE mail command, 258
distribution, 62
distribution mode configuration key-

word, 57
do it configuration keyword, 184
doc/ directory, 31
domain configuration keyword, 49, 200
double installation, 42

edit-list.conf file, 25, 53
edit list.conf file, 23, 55, 188, 194
editor, 146
editor list parameter, 199, 200
editor include list parameter, 22, 200
editor include.source parameter

list parameter, 190
editor inlude list parameter, 172
editorkey, 146
editorkey list parameter, 200
editorkeyonly list parameter, 200
email configuration keyword, 50, 155
email list parameter, 171, 201, 269, 287
Encode perl module, 105
encrypt list parameter, 264
entry list parameter, 292, 294
error list parameter, 287, 291, 293, 294,

296
error.tt2 file, 296
error color configuration keyword, 52,

155
error config file, 193
etc configuration keyword, 55
etc/ directory, 112
etc/families/age-occupation/config.tt2

file, 196
eval bouncer configuration keyword,

241
eval bouncers task configuration key-

word, 68
Exim, 59
exim UNIX command, 45
expire bounce task configuration key-

word, 68
expire bounce task list parameter, 223

f dir list parameter, 206
families, 187
families file, 188
family closed file, 192–194
family name, 228
familyqueue file, 63, 195
FastCGI, 30, 96
FCGI perl module, 30, 96
file list parameter, 269, 278, 279, 299
File-Spec perl module, 29
filename list parameter, 262, 274, 299
filesystem-encoding, 66
filesystem encoding configuration

keyword, 66, 105

308 INDEX

filter list parameter, 207
filter1 list parameter, 209
filter2 list parameter, 209
footer-type, 219
footer type list parameter, 176, 177,

220
footer type (optional, default

value is mime) list parame-
ter, 219

for file, 108, 109
from list parameter, 262–265, 267, 268
From : header, 49, 50, 129
from : configuration keyword, 143
fromlist list parameter, 267
function list parameter, 279

gcc UNIX command, 28
gecos list parameter, 171, 201
GET mail command, 226, 256
global remind configuration keyword,

55
global report cmd(’intern’,$error,$data,$sender,$robot)

file, 293
global report cmd(’intern’,$error,$data,$sender,$robot,1)

file, 293
global report cmd(’intern quiet’,$error,$data)

file, 293
global report cmd(’intern quiet’,$error,$data,$sender,$robot,1)

file, 293
global report cmd(’user’,$error,$data

file, 293
global report cmd(’user’,$error,$data,$sender,$robot,1)

file, 293
global task models directory, 55

halt rate list parameter, 223
headers list parameter, 262
HELP mail command, 160, 255
helpfile.tt2 file, 255
home configuration keyword, 43, 55
host, 200
host configuration keyword, 49, 155, 156
host list parameter, 200, 205, 207, 208
http host configuration keyword, 154,

156
httpd.conf file, 112

i list parameter, 281
i18n, 103
ignore configuration keyword, 58

include, 204
include-list, 204
include-remote-sympa-list, 205
include file list parameter, 172, 204,

210
include ldap 2level query list para-

meter, 208
include ldap query list parameter,

172, 204, 207
include list list parameter, 172, 204
include remote file list parameter,

210
include remote sympa list list para-

meter, 172, 204, 205
include sql query list parameter, 172,

204, 205
INDEX mail command, 226, 256
index.htm file, 238
index.html file, 238
INFO mail command, 172, 255
info file, 182
info list parameter, 201
init report command.tt2 file, 294
internationalization, 162
INVITE mail command, 175, 256
IO-stringy perl module, 29

key passwd configuration keyword, 76
key password configuration keyword,

251
kill -HUP file, 37
kill -HUP option, 37
kill -TERM file, 37
kill -TERM option, 37

lang configuration keyword, 66, 155,
162, 200

lang list parameter, 162, 262, 267, 268,
298

LAST mail command, 226, 256
latest arc file, 108
latest d read file, 107, 109
latest instantiation, 229
latest lists file, 107
LDAP, 15, 17–19, 30, 98, 130, 147, 172,

203, 204, 207, 208, 247
LDAP authentication, 17, 18, 130
LDAP filter, 147
LDAP-based authentication, 23
LDAP-based mailing lists, 17

INDEX 309

ldap alias manager.pl file, 48
libintl-perl perl module, 29
LibXML, 28
light color configuration keyword, 52,

155
list list parameter, 262, 287, 291, 292,

296, 299
list->{’admin’} list parameter, 276
list.lang list.name list.domain

list.host list.subject
list.dir list.owner list
parameter, 267

List.pm, 265
List : :archive send(), 268
List : :automatic tag(), 273
List : :compute topic(), 273
List : :distribute msg(), 265
List : :get available msg topic(), 273
List : :is available msg topic(), 272
List : :is msg topic tagging required(),

273
List : :is there msg topic(), 272
List : :load msg topic file(), 274
List : :modi-

fying msg topic for subscribers(),
275

List : :request auth(), 269
List : :select subscribers for topic(), 275
List : :send auth(), 270
List : :send file(), 267
List : :send global file(), 268
List : :send msg(), 266
List : :send msg digest(), 266
List : :send notify to editor(), 271
List : :send notify to listmaster(), 270
List : :send notify to owner(), 271
List : :send notify to user(), 271
List : :send to editor(), 269
List : :tag topic(), 274
list aliases file, 48
list check smtp configuration key-

word, 60, 61
list check suffixes configuration

keyword, 61
list created.tt2 file, 184
list rejected.tt2 file, 184
list task models directory, 55
listmaster configuration keyword, 50,

100, 155, 184

listmaster email configuration key-
word, 50

listmaster notification.tt2 file,
296

listname list parameter, 264, 284, 285
listname, subject,owner.email

and/or
owner include.source
list parameter, 182

LISTS mail command, 160, 202, 203, 256
load subscribers.pl file, 91
locale configuration keyword, 66
locale/ directory, 31
localedir configuration keyword, 65
localization, 162
log facility list parameter, 33
log level configuration keyword, 56
log smtp configuration keyword, 58, 155
log socket type configuration key-

word, 56
log socket type list parameter, 34
logo html definition configuration

keyword, 52, 155
loop-detection, 164
loop-prevention-regex, 219
loop command decrease factor

configuration keyword, 75, 164
loop command max configuration key-

word, 75, 164
loop command sampling delay confi-

guration keyword, 75, 164
loop prevention regex configuration

keyword, 75, 219
loop prevention regex list parameter,

219

mail aliases, 46, 169
mail.pm, 261
mail : :$fh list parameter, 265
mail : :mail file(), 262
mail : :mail forward(), 263
mail : :mail message(), 262
mail : :reaper(), 263
mail : :sending(), 264
mail : :sendto(), 264
mail : :set send spool(), 263
mail : :smtpto(), 265
mail tt2 directory, 55, 104
mail tt2/authorization reject.tt2

file, 291

310 INDEX

mail tt2/command report.tt2 file,
291, 292

mail tt2/listmaster notification.tt2
file, 291

mail tt2/message report.tt2 file,
291

MailTools perl module, 29
make UNIX command, 29, 32, 40
make install UNIX command, 21, 32,

36, 39
Makefile file, 31
max-size, 218
max size configuration keyword, 58,

155, 218
max size list parameter, 58, 218
maxsmtp configuration keyword, 57
md5 configuration keyword, 129, 143
md5password configuration keyword,

113
message list parameter, 262, 266, 269,

270, 278
message topic, 231
message.footer.mime file, 176
message.header.mime file, 176
Message.pm, 299
message : :add topic(), 300
message : :dump(), 299
message : :get topic(), 300
message : :new(), 299
message report.tt2 file, 291, 292
method list parameter, 269, 274
MhOnArc file, 23
mhonarc file, 99
mhonarc-ressources file, 99
mhonarc-ressources.tt2 file, 66
MIME, 16
MIME-Base64 perl module, 29
MIME-tools perl module, 29
minimum bouncing count configura-

tion keyword, 68, 242
minimum bouncing period configura-

tion keyword, 69, 242
misaddressed commands configuration

keyword, 58, 59
misaddressed commands regexp

configuration keyword, 59
mod fastcgi, 96
mod ssl, 130
~model type.model.task file, 166
moderation, 62, 64, 170, 199, 259

moderator, 199, 259
MODINDEX mail command, 64, 259
msg list parameter, 263, 264, 273, 274,

279, 287, 297, 299
msg’ list parameter, 300
msg-topic, 221
msg-topic-keywords-apply-on, 222
msg-topic-tagging, 222
msg/ directory, 23
msg as string list parameter, 299
msg body list parameter, 264
msg count file, 242
msg header list parameter, 264
msg id list parameter, 274, 298
msg string list parameter, 291
msg topic list parameter, 163, 203, 221,

231, 272
msg topic.keywords list parameter,

190, 222, 232, 274
msg topic.name list parameter, 222,

272, 273
msg topic.title list parameter, 222
msg topic keywords apply on list pa-

rameter, 222, 231, 274
msg topic tagging list parameter, 222,

231, 273
msgid list parameter, 291
Msql-Mysql-modules perl module, 80
multiple file, 182
my family file, 191
my file.xml file, 183, 191
my robot file, 183, 191
mydirectory directory, 237
mydirectory/mysubdirectory direc-

tory, 234
mydirectory/mysubdirectory/.desc

directory, 234
mydirectory/mysubdirectory/.desc.myfile.myextension

directory, 234
mydirectory/mysubdirectory/myfile

directory, 237
mydirectory/mysubdirectory/myfile.myextension

directory, 234
myfile directory, 237
MySQL, 17, 28, 37, 90
mysql, 41, 72
mysqld file, 43
mysubdirectory directory, 237

name configuration keyword, 113

INDEX 311

name list parameter, 206, 262, 279, 284
negative regexp configuration key-

word, 132, 134, 135
Net : :LDAP perl module, 30, 207, 208
Net : :LDAPS, 137, 138, 140
new server, 43
new msg topic list parameter, 275
newaliases UNIX command, 46, 48
NEWS file, 39, 41
notice.tt2 file, 296, 297
notice report msg() file, 291
Notification list parameter, 224
now list parameter, 293
nrcpt configuration keyword, 59
nrcpt by domain file, 24

open configuration keyword, 179
open file, 183
openSSL UNIX command, 251
openssl configuration keyword, 76, 251
operation list parameter, 270–272, 276
Oracle, 17, 28
orig msg list parameter, 299
other email list parameter, 217
outgoing/ directory, 23
output list parameter, 300
owner, 47
owner file, 182
owner list parameter, 199–201, 223
owner include list parameter, 22, 172,

199, 200, 202
owner include.source parameter

list parameter, 190
owner priority configuration keyword,

71

p12topem.pl -help UNIX command,
253

param file, 172, 202
param list parameter, 269–272, 291, 292
param constraint.conf, 190
param constraint.conf file, 188, 190
passwd list parameter, 206–208, 211
password configuration keyword, 253
path list parameter, 205
pending configuration keyword, 179, 184
period list parameter, 226
pictures, 222
pictures feature configuration key-

word, 53, 155, 222

pictures feature list parameter, 222
pictures max size configuration key-

word, 53, 155
pidfile configuration keyword, 56
pidfile creation configuration key-

word, 57
pkg list parameter, 299
port list parameter, 205, 207, 208
postfix, 59
postfix UNIX command, 16, 28, 45, 48
postfix manager.pl file, 32
PostgreSQL, 17, 28
preserve customizations, 42
priority list parameter, 223
private list parameter, 16
private key configuration keyword, 253
privateoreditorkey list parameter, 16,

200
process bouncers configuration key-

word, 242
process bouncers task configuration

keyword, 68
profile list parameter, 201, 202
protected list parameter, 299
proxy for variables configuration

keyword, 113
purge orphan bounces task configu-

ration keyword, 68
purge user table task configuration

keyword, 74

Qmail, 59
qmail UNIX command, 16, 28, 45
queue configuration keyword, 62, 64
queue file, 23, 31–33, 45, 62, 195
queueauth configuration keyword, 62
queueautomatic configuration key-

word, 63, 65, 196, 197
queuebounce configuration keyword, 63
queuebounce directory, 47
queuedigest configuration keyword, 62
queuedistribute configuration key-

word, 62
queuemod configuration keyword, 62, 64
queueoutgoing configuration keyword,

63
queuetask configuration keyword, 63
queuetopic configuration keyword, 63
QUIET mail command, 258
QUIET ADD mail command, 258

312 INDEX

QUIET DELETE mail command, 258
QUIT mail command, 257
quota list parameter, 217, 227

rate list parameter, 69, 224
rcpt list parameter, 262–265, 279, 299
RDBMS, 17, 28
reception configuration keyword, 221
reception list parameter, 171, 221, 256,

257
reception mode, 231
reception nomail list parameter, 201,

202
regex1 list parameter, 209
regex2 list parameter, 209
regexp configuration keyword, 132, 134,

135
Regularity rate configuration key-

word, 242
REJECT mail command, 173, 175, 259
reject configuration keyword, 184
reject report cmd(’auth’,$error,$data,$cmd)

file, 293
reject report cmd(’intern’,$error,$data,$cmd,$sender,$robot)

file, 293
reject report cmd(’intern quiet’,$error,$data,$cmd)

file, 293
reject report cmd(’user’,$error,$data,$cmd)

file, 293
reject report msg() file, 291
reject report web(’auth’,$error,$data,$action,

$list) file, 296
reject report web(’intern’,$error,$data,$action,$list,$user,$robot)

file, 296
reject report web(’intern quiet’,$error,$data,$action,$list)

file, 296
reject report web(’user’,$error,$data,$action,

$list) file, 296
RELEASE NOTES file, 19, 27
REMIND mail command, 175, 258
remind list parameter, 213
remind mail command, 213
REMIND * mail command, 160, 161
remind.annual.task file, 165
remind.semestrial.task file, 165
remind.tt2 file, 176
remind return path configuration key-

word, 67, 225
remind return path list parameter, 225
remind task list parameter, 70

remote application name configura-
tion keyword, 113

remote host configuration keyword, 113
remote host list parameter, 205
remove headers configuration keyword,

60
Reply-To : header, 217, 218
reply to header list parameter, 217
replyto list parameter, 262, 267
report.pm, 290
report : :get auth reject web(), 295
report : :get intern error web(), 295
report : :get notice web(), 296
report : :get user error web(), 295
report : :init report cmd(), 292
report : :init report web(), 295
report : :is there any reject report web(),

295
report : :is there any report cmd(), 292
report : :notice report cmd(), 294
report : :notice report web(), 297
report : :reject report cmd(), 293
report : :reject report msg(), 291, 292
report : :reject report web(), 296
report : :send report cmd(), 293, 294
request priority configuration key-

word, 71
return path list parameter, 262, 267,

268
return path suffix configuration key-

word, 67
REVIEW mail command, 17, 171, 215,

221, 255–257
review list parameter, 215, 216, 256
rfc2369-header-fields, 219
rfc2369 header fields configuration

keyword, 60, 219
rfc2369 header fields list parameter,

219
robot list parameter, 262–265, 268–270,

273, 274, 276, 278, 279, 281–
286, 291–294, 296–298

robot aliases, 45
robot.conf file, 23, 25, 100, 112, 154,

200
robot domain list parameter, 268
rss, 107

sample directory, 163, 169
sample/ directory, 23, 31

INDEX 313

scenari directory, 55
scenari/subscribe.rennes1 file, 146
scenario, 143
scope list parameter, 207
scope1 list parameter, 209
scope2 list parameter, 209
script directory, 100
script/ directory, 80
select list parameter, 207
select1 list parameter, 209
select2 list parameter, 209
selected color configuration keyword,

52, 155
self list parameter, 266, 267, 269–275,

300
send configuration keyword, 58
send list parameter, 16, 200, 214, 215,

258, 259
send private configuration keyword,

143
send report cmd() file, 293
sender list parameter, 281, 293, 294, 297,

299
sendmail UNIX command, 16, 28, 45,

48, 59
sendmail configuration keyword, 59
sendmail.mc file, 47, 60
sendmail aliases configuration key-

word, 47, 48, 60
sendmail args configuration keyword,

59
SET mail command, 256, 257
set-uid-on-exec bit, 33
SET LISTNAME CONCEAL mail com-

mand, 257
SET LISTNAME MAIL mail command,

171, 256, 257
SET LISTNAME NOCONCEAL mail com-

mand, 257
SET LISTNAME NOMAIL mail command,

171, 257
SET LISTNAME SUMMARY mail com-

mand, 171
shaded color configuration keyword,

52, 155
shared, 216, 233
shared directory, 216, 235–237
SIG mail command, 173
sign mod list parameter, 281, 282, 284–

287

sign mode list parameter, 262, 264
SIGNOFF mail command, 256, 258
SIGNOFF * mail command, 256
size list parameter, 299
sleep configuration keyword, 64
smime configuration keyword, 129, 143
smime crypted list parameter, 299
smime signed list parameter, 299
smime subject list parameter, 299
smtp configuration keyword, 129, 143
soap directory, 112
soap url configuration keyword, 51,

112, 155
source list parameter, 202
source myfile list parameter, 202
source parameter list parameter, 172,

202
source parameters a,b,c list para-

meter, 202
spam protection, 51, 228
spam protection configuration key-

word, 51, 228
spool, 62, 64, 259
spool configuration keyword, 62
spool list parameter, 263
spool dir list parameter, 280
SQL, 15, 17, 147, 172, 203, 204
SQL filter, 148
sql query list parameter, 206
SQLite, 17, 28
src/ directory, 31
src/Commands.pm file, 261
src/List.pm file, 261
~src/locale/Makefile file, 66
src/mail.pm file, 261
src/Message.pm file, 261
src/report.pm file, 261
src/sympa.pm file, 261
src/tools.pm file, 261
src/wwsympa.pm file, 261
ssl version list parameter, 207, 209
static content path configuration

keyword, 53, 155
static content url configuration key-

word, 53, 155
statistics, 176
STATS mail command, 256
stats file, 256
stop-signals, 37
string list parameter, 297

314 INDEX

string topic list parameter, 275
SUB mail command, 173
subject list parameter, 199, 202, 262
Subject : header, 255
subject charset list parameter, 299
SUBSCRIBE mail command, 201, 256, 258
subscribe list parameter, 201, 211, 212,

256
subscriber file, 171
subscriber.bounce

subscriber.first bounce
list parameter, 267

subscriber.date
subscriber.update date
list parameter, 267

subscriber table, 74, 79
subscribers configuration keyword,

203
subscribers file, 80, 91, 92
subscribers list parameter, 275
subscribers.closed.dump file, 186
subscribers.db.dump file, 36, 92
subscription requests, 65
suffix list parameter, 207
suffix1 list parameter, 209
suffix2 list parameter, 209
supported lang configuration keyword,

66, 155
suscriber table configuration key-

word, 68
Sybase, 17, 28
sympa-5.3a.10/ directory, 31
sympa.conf, 49
sympa.conf configuration keyword, 253
sympa.conf file, 23–25, 31–34, 41, 47,

54, 90–93, 100, 112, 154, 156,
162, 165, 183, 196, 197, 203,
225, 227

sympa.pl, 277
sympa.pl file, 23, 24, 35, 41, 45, 52, 56,

57, 62, 63, 94, 101, 153, 179,
183, 186, 196

sympa.pl --upgrade file, 42, 43
sympa.pl -md5 digest=<the

password> UNIX command,
113

~sympa/bin/ directory, 33
~sympa/locale directory, 35
~sympa/src/ directory, 31
sympa : :cleanspool(), 280

sympa : :DoCommand(), 278
sympa : :DoFile(), 278
sympa : :DoForward(), 279
sympa : :DoMessage(), 278
sympa : :DoSendMessage(), 279
sympa : :SendDigest(), 279
sympa : :sighup(), 280
sympa : :sigterm(), 280
sympa aliases file, 48
sympa aliases.db file, 48
sympa email list parameter, 264
sympa priority configuration keyword,

71
sympa soap client.pl file, 113
sympa soap server.fcgi file, 23
sympa wizard.pl file, 23
syslog configuration keyword, 56
syslog list parameter, 33
syslogd UNIX command, 33, 56

task/ directory, 23, 167
task manager.pl file, 23, 68, 74
tasks, 164
Template-Toolkit perl module, 30
templates format, 159
templates, list, 173
templates, site, 160
templates, web, 162
testlogs.pl file, 34
text color configuration keyword, 52,

155
timeout list parameter, 207
timeout1 list parameter, 209
timeout2 list parameter, 209
title configuration keyword, 155
tmpdir configuration keyword, 64
to list parameter, 262
To : header, 255
tools.pl, 297
tools : :checkcommand(), 297
tools : :clean email(), 298
tools : :clean msg id(), 298
tools : :diff on arrays(), 298
tools : :get array from splitted string(),

297
tools : :make tt2 include path(), 298
topic, 65
topic list parameter, 273, 274, 299, 300
topic’ list parameter, 300
topic list list parameter, 274

INDEX 315

topics, 163
topics list parameter, 163, 203
topics.conf file, 23, 104, 163
tpl list parameter, 267, 268
trusted application configuration

keyword, 112
trusted applications.conf configu-

ration keyword, 112
trusted applications.conf file,

111–113
ttl, 204
ttl list parameter, 204
TULP, 18
type list parameter, 287, 291, 293, 294,

296
Type rate configuration keyword, 242

umask UNIX command, 57
umask configuration keyword, 57
unique configuration keyword, 225
unsubscribe list parameter, 212
update db field types configuration

keyword, 72
url list parameter, 211
urlize min size configuration key-

word, 61
use blacklist, 58
use blacklist configuration keyword,

58, 150
use blacklist none configuration

keyword, 58
use ssl list parameter, 207, 208
user list parameter, 206–208, 211, 272,

291, 292, 296
user-data-source, 203
user.attributes list parameter, 267
user.email list parameter, 267, 268
user.lang list parameter, 267
user.password list parameter, 267
user.password user.lang list para-

meter, 268
user data source list parameter, 92,

158, 171, 172, 203–205, 207,
208, 210, 211

USER EMAIL configuration keyword, 113
user table, 74, 79

value list parameter, 217
verp rate configuration keyword, 46,

67, 225, 242

verp rate list parameter, 225
virtual transport file, 48, 60
visibility list parameter, 161, 171,

203, 221, 256, 257

warn rate list parameter, 223
web archive, 226
web archive list parameter, 226
web archive spam protection confi-

guration keyword, 51, 228
web recode to configuration keyword,

66
web tt2 directory, 55, 104
web tt2/error.tt2 file, 291, 294
web tt2/notice.tt2 file, 291, 294
welcome.tt2 file, 22
~welcome[.mime] file, 256
welcome return path configuration

keyword, 67, 225
welcome return path list parameter,

225
what list parameter, 281–284
WHICH mail command, 256
which list parameter, 278, 282, 283, 285
who list parameter, 268, 269
WWSympa, 17, 22, 23, 30, 47, 51, 91, 93–

97, 99, 100, 107, 129, 140, 157,
159, 160, 162, 163, 172, 173,
203, 204, 233

wwsympa directory, 31
wwsympa.conf file, 23, 31, 33, 43, 156,

226, 241
WWSympa.fcgi file, 93
wwsympa.fcgi, 287
wwsympa.fcgi file, 23, 37, 94, 95, 140
wwsympa : :do add(), 288
wwsympa : :do change email(), 288
wwsympa : :do del(), 288
wwsympa : :do distribute(), 289
wwsympa : :do modindex(), 289
wwsympa : :do reject(), 288
wwsympa : :do remind(), 290
wwsympa : :do request topic(), 290
wwsympa : :do send mail(), 289
wwsympa : :do send me(), 290
wwsympa : :do sendpasswd(), 289
wwsympa : :do set(), 290
wwsympa : :do signoff(), 288
wwsympa : :do subscribe(), 287

316 INDEX

wwsympa : :do tag topic by sender(),
290

wwsympa sudo wrapper.pl file, 94, 95
wwsympa url configuration keyword, 50,

155, 156

your infected msg.tt2 file, 245

	Presentation
	License
	Features
	Project directions
	History
	Authors and credits
	Mailing lists and support

	what does Sympa consist of ?
	Organization
	Binaries
	Configuration files
	Spools
	Roles and privileges
	(Super) listmasters
	(Robot) listmasters
	Privileged list owners
	(Basic) list owners
	Moderators (also called Editors)
	Subscribers (or list members)

	Installing Sympa
	Obtaining Sympa, related links
	Prerequisites
	System requirements
	Install Berkeley DB (NEWDB)
	Install PERL and CPAN modules
	Required CPAN modules
	Create a UNIX user

	Compilation and installation
	Choosing directory locations

	Robot aliases
	Logs

	Running Sympa
	sympa.pl
	INIT script
	Stopping Sympa and signals

	Upgrading Sympa
	Incompatible changes
	CPAN modules update
	Database structure update
	Preserving your customizations
	Running 2 Sympa versions on a single server
	Moving to another server

	Mail aliases
	Robot aliases
	List aliases
	Alias manager
	Virtual domains

	sympa.conf parameters
	Site customization
	domain
	email
	listmaster
	listmaster_email
	wwsympa_url
	soap_url
	spam_protection
	web_archive_spam_protection
	color_0, color_1 .. color_15
	dark_color, light_color, text_color, bg_color, error_color, selected_color, shaded_color
	logo_html_definition
	css_path
	css_url
	static_content_path
	static_content_url
	pictures_feature
	pictures_max_size
	cookie
	create_list
	automatic_list_feature
	automatic_list_creation
	automatic_list_removal
	global_remind

	Directories
	home
	etc

	System related
	syslog
	log_level
	log_socket_type
	pidfile
	pidfile_creation
	umask

	Sending related
	distribution_mode
	maxsmtp
	log_smtp
	use_blacklist
	max_size
	misaddressed_commands
	misaddressed_commands_regexp
	nrcpt
	avg
	sendmail
	sendmail_args
	sendmail_aliases
	rfc2369_header_fields
	remove_headers
	anonymous_headers_fields
	list_check_smtp
	list_check_suffixes
	urlize_min_size

	Quotas
	default_shared_quota
	default_archive_quota

	Spool related
	spool
	queue
	queuedistribute
	queuemod
	queuedigest
	queueauth
	queueoutgoing
	queuetopic
	queuebounce
	queuetask
	queueautomatic
	tmpdir
	sleep
	clean_delay_queue
	clean_delay_queuemod
	clean_delay_queueauth
	clean_delay_queuesubscribe
	clean_delay_queuetopic
	clean_delay_queueautomatic

	Internationalization related
	localedir
	supported_lang
	lang
	web_recode_to
	filesystem_encoding

	Bounce related
	verp_rate
	welcome_return_path
	remind_return_path
	return_path_suffix
	expire_bounce_task
	purge_orphan_bounces_task
	eval_bouncers_task
	process_bouncers_task
	minimum_bouncing_count
	minimum_bouncing_period
	bounce_delay
	default_bounce_level1_rate
	default_bounce_level2_rate
	bounce_email_prefix
	bounce_warn_rate
	bounce_halt_rate
	default_remind_task

	Tuning
	cache_list_config
	sympa_priority
	request_priority
	owner_priority
	default_list_priority

	Database related
	update_db_field_types
	db_type
	db_name
	db_host
	db_port
	db_user
	db_passwd
	db_timeout
	db_options
	db_env
	db_additional_subscriber_fields
	db_additional_user_fields
	purge_user_table_task

	Loop prevention
	loop_command_max
	loop_command_sampling_delay
	loop_command_decrease_factor
	loop_prevention_regex

	S/MIME configuration
	openssl
	capath
	cafile
	key_passwd
	chk_cert_expiration_task
	crl_update_task

	Antivirus plug-in
	antivirus_path
	antivirus_args
	antivirus_notify

	Sympa and its database
	Prerequisites
	Installing PERL modules
	Creating a sympa DataBase
	Database structure
	Database creation

	Setting database privileges
	Importing subscribers data
	Importing data from a text file
	Importing data from subscribers files

	Management of the include cache
	Extending database table format
	Sympa configuration

	WWSympa, Sympa's web interface
	Organization
	Web server setup
	wwsympa.fcgi access permissions
	Installing wwsympa.fcgi in your Apache server
	Using FastCGI

	wwsympa.conf parameters
	arc_path
	archive_default_index thrd | mail
	archived_pidfile
	bounce_path
	bounced_pidfile
	cookie_expire
	cookie_domain
	default_home
	icons_url
	log_facility
	mhonarc
	htmlarea_url
	password_case sensitive | insensitive
	title
	use_fast_cgi 0 | 1

	MhOnArc
	Archiving daemon
	Database configuration
	Logging in as listmaster

	Sympa Internationalization
	Catalogs and templates
	Translating Sympa GUI in your language
	Defining language-specific templates
	Translating topics titles
	Handling of encodings

	Sympa RSS channel
	latest_lists
	active_lists
	latest_arc
	latest_d_read

	Sympa SOAP server
	Introduction
	Web server setup
	Sympa setup
	trust remote application
	The WSDL service description
	Client-side programming
	Writing a Java client with Axis

	Authentication
	S/MIME and HTTPS authentication
	Authentication with email address, uid or alternate email address
	Generic SSO authentication
	CAS-based authentication
	auth.conf
	user_table paragraph
	ldap paragraph
	generic_sso paragraph
	cas paragraph

	Sharing WWSympa authentication with other applications
	Provide a Sympa login form in another application

	Authorization scenarios
	rules specifications
	Named Filters
	LDAP Named Filters Definition
	SQL Named Filters Definition
	Search Condition

	scenario inclusion
	blacklist implicit rule
	Custom perl package conditions
	Hidding scenario files

	virtual host
	How to create a virtual host
	robot.conf
	Robot customization

	Managing multiple virtual hosts

	Interaction between Sympa and other applications
	Soap
	RSS channel
	Sharing WWSympa authentication with other applications
	Sharing data with other applications
	Subscriber count

	Customizing Sympa/WWSympa
	Template file format
	Site template files
	helpfile.tt2
	lists.tt2
	global_remind.tt2
	your_infected_msg.tt2

	Web template files
	Internationalization
	Sympa internationalization
	List internationalization
	User internationalization

	Topics
	Authorization scenarios
	Loop detection
	Tasks
	List task creation
	Global task creation
	Model file format
	Model file examples

	Mailing list definition
	Mail aliases
	List configuration file
	Examples of configuration files
	Subscribers file
	Info file
	Homepage file
	Data inclusion file
	List template files
	welcome.tt2
	bye.tt2
	removed.tt2
	reject.tt2
	invite.tt2
	remind.tt2
	summary.tt2
	list_aliases.tt2

	Stats file
	List model files
	remind.annual.task
	expire.annual.task

	Message header and footer
	Archive directory

	List creation, edition and removal
	List creation
	Data for list creation
	XML file format

	List families
	List creation on command line with sympa.pl
	Creating and editing mailing using the web
	List creation on the Web interface
	Who can create lists on the Web interface
	typical list profile and Web interface
	List edition

	Removing a list

	Lists Families
	Family concept
	Using family
	Definition
	Instantiation
	Modification
	Closure
	Adding one list
	Removing one list
	Modifying one list
	List parameters edition in a family context

	Automatic list creation
	Configuring your MTA
	Defining the list family
	Configuring Sympa

	List configuration parameters
	List description
	editor
	editor_include
	host
	lang
	owner
	owner_include
	subject
	topics
	visibility

	Data source related
	user_data_source
	ttl
	include_list
	include_remote_sympa_list
	include_sql_query
	include_ldap_query
	include_ldap_2level_query
	include_file
	include_remote_file

	Command related
	subscribe
	unsubscribe
	add
	del
	remind
	remind_task
	expire_task
	send
	review
	shared_doc

	List tuning
	reply_to_header
	max_size
	anonymous_sender
	custom_header
	rfc2369_header_fields
	loop_prevention_regex
	custom_subject
	footer_type
	digest
	digest_max_size
	available_user_options
	default_user_options
	msg_topic
	msg_topic_keywords_apply_on
	msg_topic_tagging
	pictures_feature
	cookie
	priority

	Bounce related
	bounce
	bouncers_level1
	bouncers_level2
	welcome_return_path
	remind_return_path
	verp_rate

	Archive related
	archive
	web_archive
	archive_crypted_msg

	Spam protection
	spam_protection
	web_archive_spam_protection

	Intern parameters
	family_name
	latest_instantiation

	Reception mode
	Message topics
	Message topic definition in a list
	Subscribing to message topic for list subscribers
	Message tagging

	Shared documents
	The three kind of operations on a document
	The description file
	Structure of description files

	The predefined authorization scenarios
	The public scenario
	The private scenario
	The scenario owner
	The scenario editor

	Access control
	Listmaster and privileged owners
	Special case of the shared directory
	General case

	Shared document actions
	Template files
	d_read.tt2
	d_editfile.tt2
	d_control.tt2
	d_upload.tt2
	d_properties.tt2

	Bounce management
	VERP
	ARF

	Antivirus
	Using Sympa with LDAP
	Sympa with S/MIME and HTTPS
	Signed message distribution
	Use of S/MIME signature by Sympa itself
	Use of S/MIME encryption
	S/Sympa configuration
	Installation
	managing user certificates
	configuration in sympa.conf
	configuration to recognize S/MIME signatures
	distributing encrypted messages

	Managing certificates with tasks
	chk_cert_expiration.daily.task model
	crl_update.daily.task model

	Using Sympa commands
	User commands
	Owner commands
	Moderator commands

	Internals
	mail.pm
	public functions
	private functions

	List.pm
	Functions for message distribution
	Functions for template sending
	Functions for service messages
	Functions for message notification
	Functions for topic messages
	Scenario evaluation
	Structure and access to list configuration parameters

	sympa.pl
	Commands.pm
	Commands processing
	tools for command processing

	wwsympa.fcgi
	report.pm
	Message diffusion
	Mail commands
	Web commands

	tools.pl
	Message.pm

